Skip to main content

An Overview of Tools and Algorithms Used to Classify, Detect, and Monitor Forest Area Using LiDAR Data

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Abstract

LIght Detection and Ranging (LIDAR) is gaining popularity more and more among scientists for developing predictive models in forest areas. Lidar point cloud data has a strong potential for application to manage forest resources thanks to its high accuracy. Obviously, the forest should be given more concern, to not be destroyed, causing economic and ecological damage which affects human lives as well. Therefore, using the developed technologies to protect it is crucial. The Lidar technology is one of the most used recently to meet this requirement. To highlight the big interest of Lidar data in the forest monitoring issue, this article introduces a summary of Lidar data sources Airborne Laser scanning (ALS), Terrestrial Laser scanning (TLS) and mobile mapping system (MMS) algorithms and methods used to classify and filter the point cloud lidar data in forest areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fowler, A., Kadatskiy, V., Usa, R.: Accuracy and error assessment of terrestrial, mobile and airborne, p. 10 (2011)

    Google Scholar 

  2. McLean, K.A., et al.: Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landscape Ecol. 31(8), 1849–1862 (2016). https://doi.org/10.1007/s10980-016-0367-9

    Article  Google Scholar 

  3. Jeronimo, S.M.A., Kane, V.R., Churchill, D.J., McGaughey, R.J., Franklin, J.F.: Applying LiDAR individual tree detection to management of structurally diverse forest landscapes. J For. 116(4), 336–346 (2018)

    Google Scholar 

  4. Windrim, L., Bryson, M.: Detection, segmentation, and model fitting of individual tree stems from airborne laser scanning of forests using deep learning. Remote Sens. 12(9), 1469 (2020)

    Article  Google Scholar 

  5. Mizoguchi, T., Ishii, A., Nakamura, H., Inoue, T., Takamatsu, H.: Lidar-based individual tree species classification using convolutional neural network, Munich, Germany, p. 103320 (2017)

    Google Scholar 

  6. Monnier, F., Vallet, B., Soheilian, B.: Trees detection from laser point clouds acquired in dense urban areas by a mobile mapping system. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 3, 245–250 (2012)

    Article  Google Scholar 

  7. Singh, S.K., Raval, S., Banerjee, B.: A robust approach to identify roof bolts in 3D point cloud data captured from a mobile laser scanner. Int J Min Sci Technol. 31(2), 303–312 (2021)

    Article  Google Scholar 

  8. Li, W., Guo, Q., Jakubowski, M.K., Kelly, M.: A new method for segmenting individual trees from the lidar point cloud. Photogramm. Eng. Remote Sens. 78(1), 75–84 (2012)

    Article  Google Scholar 

  9. Vauhkonen, J., Ene, L., Gupta, S., Heinzel, J., Holmgren, J., Pitkanen, J., et al.: Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85(1), 27–40 (2012)

    Article  Google Scholar 

  10. Dalponte, M., Coomes, D.A.: Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol. Evol. 7(10), 1236–1245 (2016)

    Article  Google Scholar 

  11. Liu, J., Shen, J., Zhao, R., Xu, S.: Extraction of individual tree crowns from airborne LiDAR data in human settlements. Math. Comput. Model. 58(3–4), 524–535 (2013)

    Article  Google Scholar 

  12. Corte, A.P.D.: Forest inventory with high-density UAV-Lidar: machine learning approaches for predicting individual tree attributes. Comput. Electron. Agric. 179, 105815 (2020)

    Article  Google Scholar 

  13. Popescu, S.C., Wynne, R.H.: Seeing the Trees in the Forest. Photogramm. Eng. Remote Sens. 70(5), 589–604 (2004)

    Article  Google Scholar 

  14. Mosin, V., Aguilar, R., Platonov, A., Vasiliev, A., Kedrov, A., Ivanov, A.: Remote sensing and machine learning for tree detection and classification in forestry applications. In: Bruzzone, L., Bovolo, F., Benediktsson, J.A. (eds.) Image and Signal Processing for Remote Sensing XXV [Internet]. Strasbourg, France: SPIE 2019, p. 14 (2019). https://doi.org/10.1117/12.2531820

  15. Dong, X., Zhang, Z., Yu, R., Tian, Q., Zhu, X.: Extraction of information about individual trees from high-spatial-resolution UAV-acquired images of an orchard. Remote Sens. 12(1), 133 (2020)

    Article  Google Scholar 

  16. Yang, X., Yang, H., Zhang, F., Fan, X., Ye, Q., Feng, Z.: A random-weighted plane-Gaussian artificial neural network. Neural Comput. Appl. 31(12), 8681–8692 (2019). https://doi.org/10.1007/s00521-019-04457-6

    Article  Google Scholar 

  17. Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., et al.: An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 8(6), 501 (2016)

    Article  Google Scholar 

  18. Zhang, K., Shu-Ching Chen, D.W., Shyu, M.L., Yan, J., Zhang, C.: A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 41(4), 872–882 (2003)

    Article  Google Scholar 

  19. Hastings, J.H., Ollinger, S.V., Ouimette, A.P., Sanders-DeMott, R., Palace, M.W., Ducey, M.J., et al.: Tree species traits determine the success of LiDAR-based crown mapping in a mixed temperate forest. Remote Sens. 12(2), 309 (2020)

    Article  Google Scholar 

  20. Wang, C., Cao, A., Chen, X., et al.: Individual rubber tree segmentation based on ground-based LiDAR data and faster R-CNN of deep learning. Forests 10(9), 793 (2019)

    Article  Google Scholar 

  21. Zhang, C., Zhou, Y., Qiu, F.: Individual tree segmentation from LiDAR point clouds for urban forest inventory. Remote Sens. 7(6), 7892–7913 (2015)

    Article  Google Scholar 

  22. Zhen, Z., Quackenbush, L., Zhang, L.: Trends in automatic individual tree crown detection and delineation—evolution of LiDAR data. Remote Sens. 8(4), 333 (2016)

    Article  Google Scholar 

  23. Mäyrä, J., Keski-Saari, S., Kivinen, S., Tanhuanpää, T., Hurskainen, P., Kullberg, P., et al.: Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural networks. Remote Sens. Environ. 256, 112322 (2021)

    Article  Google Scholar 

  24. Berk, P., Stajnko, D., Belsak, A., Hocevar, M.: Digital evaluation of leaf area of an individual tree canopy in the apple orchard using the LIDAR measurement system. Comput. Electron. Agric. 169, 105158 (2020)

    Article  Google Scholar 

  25. Vayghan, S.S., Salmani, M., Ghasemkhani, N., Pradhan, B., Alamri, A.: Artificial intelligence techniques in extracting building and tree footprints using aerial imagery and LiDAR data. Geocarto Int. 19, 1–29 (2020)

    Google Scholar 

  26. Jaskierniak, D., Lucieer, A., Kuczera, G., Turner, D., Lane, P.N.J., Benyon, R.G., et al.: Individual tree detection and crown delineation from Unmanned Aircraft System (UAS) LiDAR in structurally complex mixed species eucalypt forests. ISPRS J. Photogramm. Remote Sens. 171, 171–187 (2021)

    Article  Google Scholar 

  27. Zarea, A., Mohammadzadeh, A.: A novel building and tree detection method from LiDAR data and aerial images. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 9(5), 1864–1875 (2016)

    Article  Google Scholar 

  28. Michałowska, M., Rapiński, J.: A review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sens. 13(3), 353 (2021)

    Article  Google Scholar 

  29. Kurdi, F.T., Amakhchan, W., Gharineiat, Z.: Random forest machine learning technique for automatic vegetation detection and modelling in LiDAR data. Int. J. Environ. Sci. Nat. Resour. 28(2) (2021). https://juniperpublishers.com/ijesnr/IJESNR.MS.ID.556234.php

  30. Man, Q., Dong, P., Yang, X., Wu, Q., Han, R.: Automatic extraction of grasses and individual trees in urban areas based on airborne hyperspectral and LiDAR data. Remote Sens. 12(17), 2725 (2020)

    Article  Google Scholar 

  31. Nguyen, H.M., Demir, B., Dalponte, M.: Weighted support vector machines for tree species classification using lidar data. In: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan, pp. 6740–6743 (2019)

    Google Scholar 

  32. Dalponte, M., Ørka, H.O., Ene, L.T., Gobakken, T., Næsset, E.: Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens Environ. 140, 306–317 (2014)

    Article  Google Scholar 

  33. Dalponte, M., Ene, L.T., Marconcini, M., Gobakken, T., Næsset, E.: Semi-supervised SVM for individual tree crown species classification. ISPRS J. Photogramm. Remote Sens. 110, 77–87 (2015)

    Article  Google Scholar 

  34. Seidel, D., Annighöfer, P., Thielman, A., Seifert, Q.E., Thauer, J.H., Glatthorn, J., et al.: Predicting tree species from 3D laser scanning point clouds using deep learning. Front. Plant Sci. 10(12), 635440 (2021)

    Article  Google Scholar 

  35. Sothe, C., De Almeida, C.M., Schimalski, M.B., La Rosa, L.E.C., Castro, J.D.B., Feitosa, R.Q., et al.: Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. GISci. Remote Sens. 57(3), 369–394 (2020)

    Article  Google Scholar 

  36. Nezami, S., Khoramshahi, E., Nevalainen, O., Pölönen, I., Honkavaara, E.: Tree species classification of drone hyperspectral and rgb imagery with deep learning convolutional neural networks. Remote Sens. 12, 1070 (2020)

    Article  Google Scholar 

  37. Breiman, L.: Random forests. Mach Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  38. Rokach, L., Maimon, O.: Decision trees. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, New York, pp. 165–192 (2005)

    Google Scholar 

  39. Džeroski, S., Kobler, A., Gjorgjioski, V.: Using decision trees to predict forest stand height and canopy cover from LANDSAT and LIDAR data, p. 9 (2006)

    Google Scholar 

  40. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  41. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62

    Chapter  Google Scholar 

  42. Alexander, C., Korstjens, A.H., Hill, R.A.: Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models. Int. J. Appl. Earth Obs. Geoinf. 65, 105–113 (2018)

    Google Scholar 

  43. Zhang, X., Meng, X., Li, C., Shang, N., Wang, J., Xu, Y., et al.: Micro-topography mapping through terrestrial LiDAR in densely vegetated coastal environments. ISPRS Int. J. Geo-Inf. 10(10), 665 (2021)

    Article  Google Scholar 

  44. Wulder, M.A., Bater, C.W., Coops, N.C., Hilker, T., White, J.C.: The role of LiDAR in sustainable forest management. For. Chron. 84(6), 807–826 (2008)

    Article  Google Scholar 

  45. Richardson, J.J., Moskal, L.M.: Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR. Remote Sens. Environ. 115(10), 2640–2651 (2011)

    Article  Google Scholar 

  46. Koetz, B., Morsdorf, F., van der Linden, S., Curt, T., Allgöwer, B.: Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data. For. Ecol. Manag. 256(3), 263–271 (2008)

    Article  Google Scholar 

  47. González-Olabarria, J.R., Rodríguez, F., Fernández-Landa, A., Mola-Yudego, B.: Mapping fire risk in the model forest of Urbión (Spain) based on airborne LiDAR measurements. Ecol. Manag. 282, 149–156 (2012)

    Article  Google Scholar 

  48. Šumarstvo, P.: Precision forestry – definition and technologies, p. 10 (2010)

    Google Scholar 

  49. Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., et al.: A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168(4), 1147–1160 (2012)

    Article  Google Scholar 

  50. Mascaro, J., Detto, M., Asner, G.P., Muller-Landau, H.C.: Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens. Environ. 115(12), 3770–3774 (2011)

    Article  Google Scholar 

  51. Yun, T., Jiang, K., Li, G., Eichhorn, M.P., Fan, J., Liu, F., et al.: Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach. Remote Sens. Environ. 256, 112307 (2021)

    Article  Google Scholar 

  52. Greenberg, J.A., Hestir, E.L., Riano, D., Scheer, G.J., Ustin, S.L.: Using LiDAR data analysis to estimate changes in insolation under large-scale riparian deforestation1. JAWRA J. Am. Water Resour. Assoc. 48(5), 939–948 (2012)

    Article  Google Scholar 

  53. Haugerud, R.A., Harding, D.J.: Some algorithms for virtual deforestation (VDF) of LIDAR topographic survey data, p. 7 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the collaborators within this work, from the writing manuscript team. El Khalil Cherif would like to mention the financial support by FCT with the LARSyS—FCT project UIDB/50009/2020 and FCT project VOAMAIS (PTDC/EEIAUT/31172/2017, 02/SAICT/2017/31172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wijdan Amakhchan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amakhchan, W. et al. (2023). An Overview of Tools and Algorithms Used to Classify, Detect, and Monitor Forest Area Using LiDAR Data. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics