Skip to main content

Wildfires Detection and Segmentation Using Deep CNNs and Vision Transformers

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Abstract

Wildfires are an important natural risk which causes enormous damage to the environment. Many researchers are working to improve firefighting using AI. Various vision-based fire detection methods have been proposed to detect fire. However, these techniques are still limited when it comes to identifying the precise fire’s shape as well as small fire areas. For such, we propose deep wildland fire detection and segmentation models based on deep Convolutional Neural Networks (CNNs) and vision Transformers. A novel deep ensemble learning method, which combines EfficientNet-B5 and DenseNet-201 models, is proposed to identify and classify wildfires on aerial images. Vision Transformers (TransUNet, MedT, and TransFire) are adopted in segmenting fire pixels and in detecting the precise shape of the fire areas using aerial and ground images. The achieved results are promising and show the potential of using deep CNNs and vision Transformers for forest fire detection and segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhloufi, M.A., Tokime, R.B., Elassady, H.: Wildland fires detection and segmentation using deep learning. In: Pattern Recognition And Tracking xxix. vol. 10649, p. 106490B. Proc. SPIE (2018)

    Google Scholar 

  2. Barmpoutis, P., Stathaki, T., Dimitropoulos, K., Grammalidis, N.: Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures. Remote Sens. 12(19), 3177 (2020). https://doi.org/10.3390/rs12193177

    Article  Google Scholar 

  3. Bochkov, V.S., Kataeva, L.Y.: wuunet: advanced fully convolutional neural network for multiclass fire segmentation. Symmetry 13(1), 98 (2021). https://doi.org/10.3390/sym13010098

    Article  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision - ECCV, pp. 213–229 (2020)

    Google Scholar 

  5. Chen, J., et al.: Transunet: Transformers make strong encoders for medical image segmentation. CoRR abs/2102.04306 (2021). https://arxiv.org/abs/2102.04306

  6. Chen, T.H., Wu, P.H., Chiou, Y.C.: An early fire-detection method based on image processing. In: International Conference on Image Processing, 2004. ICIP ’04, pp. 1707–1710 (2004)

    Google Scholar 

  7. Dimitropoulos, S.: Fighting fire with science. Nature 576(7786), 328–329 (2019). https://doi.org/10.1038/d41586-019-03747-2

    Article  Google Scholar 

  8. Frizzi, S., Bouchouicha, M., Ginoux, J.M., Moreau, E., Sayadi, M.: Convolutional neural network for smoke and fire semantic segmentation. IET Image Proc. 15(3), 634–647 (2021). https://doi.org/10.1049/ipr2.12046

    Article  Google Scholar 

  9. Gaur, A., et al.: Fire sensing technologies: a review. IEEE Sens. J. 19(9), 3191–3202 (2019). https://doi.org/10.1109/JSEN.2019.2894665

    Article  Google Scholar 

  10. Ghali, R., Akhloufi, M.A., Jmal, M., Mseddi, W.S., Attia, R.: Forest fires segmentation using deep convolutional neural networks. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2109–2114 (2021)

    Google Scholar 

  11. Ghali, R., Akhloufi, M.A., Jmal, M., Souidene Mseddi, W., Attia, R.: Wildfire segmentation using deep vision transformers. Remote Sens. 13(17), 3527 (2021). https://doi.org/10.3390/rs13173527

    Article  Google Scholar 

  12. Ghali, R., Akhloufi, M.A., Mseddi, W.S.: Deep learning and transformer approaches for uav-based wildfire detection and segmentation. Sensors 22(5), 1977 (2022). https://doi.org/10.3390/s22051977

    Article  Google Scholar 

  13. Ghali, R., Jmal, M., Souidene Mseddi, W., Attia, R.: Recent advances in fire detection and monitoring systems: A review. In: Proceedings of the 18th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), Vol. 1, pp. 332–340 (2018)

    Google Scholar 

  14. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)

    Google Scholar 

  15. Lee, W., Kim, S., Lee, Y.T., Lee, H.W., Choi, M.: Deep neural networks for wild fire detection with unmanned aerial vehicle. In: IEEE International Conference on Consumer Electronics (ICCE), pp. 252–253 (2017)

    Google Scholar 

  16. Mlích, J., Koplík, K., Hradiš, M., Zemčík, P.: Fire segmentation in still images. In: International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 27–37 (2020)

    Google Scholar 

  17. Mseddi, W.S., Ghali, R., Jmal, M., Attia, R.: Fire detection and segmentation using yolov5 and u-net. In: 29th European Signal Processing Conference (EUSIPCO), pp. 741–745 (2021)

    Google Scholar 

  18. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8–14, 2019, Vancouver, BC, Canada, pp. 8024–8035 (2019)

    Google Scholar 

  19. Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P., Blasch, E.: The flame dataset: Aerial imagery pile burn detection using drones (uavs). IEEE Dataport (2020). https://doi.org/10.21227/qad6-r683

  20. Shamsoshoara, A., Afghah, F., Razi, A., Zheng, L., Fulé, P.Z., Blasch, E.: Aerial imagery pile burn detection using deep learning: the flame dataset. Comput. Netw. 193, 108001 (2021). https://doi.org/10.1016/j.comnet.2021.108001

    Article  Google Scholar 

  21. Srinivas, K., Dua, M.: Fog computing and deep cnn based efficient approach to early forest fire detection with unmanned aerial vehicles. In: Inventive Computation Technologies, pp. 646–652 (2020)

    Google Scholar 

  22. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248 (2017)

    Google Scholar 

  23. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning, pp. 6105–6114 (2019)

    Google Scholar 

  24. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3d medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20730–20740 (2022)

    Google Scholar 

  25. Toulouse, T., Rossi, L., Campana, A., Celik, T., Akhloufi, M.A.: Computer vision for wildfire research: an evolving image dataset for processing and analysis. Fire Saf. J. 92, 188–194 (2017). https://doi.org/10.1016/j.firesaf.2017.06.012

    Article  Google Scholar 

  26. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: Gated axial-attention for medical image segmentation. CoRR abs/2102.10662 (2021). https://arxiv.org/abs/2102.10662

  27. Wang, D., Cui, X., Park, E., Jin, C., Kim, H.: Adaptive flame detection using randomness testing and robust features. Fire Saf. J. 55, 116–125 (2013). https://doi.org/10.1016/j.firesaf.2012.10.011

    Article  Google Scholar 

  28. Woodward, A.: Natural resources canada. https://cwfis.cfs.nrcan.gc.ca/report/ lAccessed 15 May 2022

  29. Wu, H., Li, H., Shamsoshoara, A., Razi, A., Afghah, F.: Transfer learning for wildfire identification in uav imagery. In: 54th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2020)

    Google Scholar 

  30. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)

    Google Scholar 

  31. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5791–5800 (2020)

    Google Scholar 

Download references

Acknowledgment

This research was enabled in part by support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) funding reference number RGPIN-2018-06233 and by the support of WestGrid (www.westgrid.ca/) and Compute Canada (www.computecanada.ca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay A. Akhloufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghali, R., Akhloufi, M.A. (2023). Wildfires Detection and Segmentation Using Deep CNNs and Vision Transformers. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics