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Abstract. Facial forgery by deepfakes has raised severe societal con-
cerns. Several solutions have been proposed by the vision community
to effectively combat the misinformation on the internet via automated
deepfake detection systems. Recent studies have demonstrated that fa-
cial analysis-based deep learning models can discriminate based on pro-
tected attributes. For the commercial adoption and massive roll-out of
the deepfake detection technology, it is vital to evaluate and understand
the fairness (the absence of any prejudice or favoritism) of deepfake de-
tectors across demographic variations such as gender and race. As the
performance differential of deepfake detectors between demographic sub-
groups would impact millions of people of the deprived sub-group. This
paper aims to evaluate the fairness of the deepfake detectors across males
and females. However, existing deepfake datasets are not annotated with
demographic labels to facilitate fairness analysis. To this aim, we man-
ually annotated existing popular deepfake datasets with gender labels
and evaluated the performance differential of current deepfake detectors
across gender. Our analysis on the gender-labeled version of the datasets
suggests (a) current deepfake datasets have skewed distribution across
gender, and (b) commonly adopted deepfake detectors obtain unequal
performance across gender with mostly males outperforming females. Fi-
nally, we contributed a gender-balanced and annotated deepfake dataset,
GBDF, to mitigate the performance differential and to promote research
and development towards fairness-aware deep fake detectors. The GBDF
dataset is publicly available at: https://github.com/aakash4305/GBDF

Keywords: DeepFakes · Fairness and Bias in AI · Facial Analysis.

1 Introduction

With the advances in deep generative models, synthetic media have become
so realistic that they are often indiscernible from authentic content for human
eyes. However, synthetic media generation techniques used by malicious users
to deceive pose a severe societal and political threat. In this context, Deepfakes
- facial forgery technique that depicts human subjects with altered identities
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or malicious actions using various deep fake generation techniques- has been
flagged as a top AI threat [26,11,31,19,33]. Deep fakes have been used to com-
mit fraud, falsify evidence, manipulate public debates, and destabilize political
processes [9,31].

FaceForensics++ Distribution

Male (Real/Fake)

Female (Real/Fake)

Irregular (Fake)

23.56%

41.31%

35.12%

CelebDF Distribution

Male (Real/Fake)

Female (Real/Fake)

70%

30%

Fig. 1. Illustration of the distribution of videos in Face Forensics++ and Celeb-
DF Dataset across gender. The percentage distribution of videos belonging to males
(real/fake), females (real/fake) and those classified as irregular swaps is shown.

To mitigate the risk posed by deep fakes, the vision community has developed
a series of effective deep fake detection methods [26,11,31] trained on large-scale
deepfake datasets. The popular deep fake detection methods include convolu-
tional neural networks (CNN) for detecting visual artifacts [22] and blending
boundaries [19], mouth movement analysis [14] and behavioral biometrics [2].
The popular publicly available deep fake datasets include Celeb-DF [21], Face-
Forensics++ [28], DeeperForensics-1.0 [16] and DFDC [12] for research and de-
velopment in this field.

Such efforts have been translated into creating real-world impact with
Microsoft’s release of Video Authenticator1, an automated tool trained on the
publicly available FaceForensics++ deepfake dataset, for detection of artificial
manipulation in images and videos. Further, Facebook2 has been advancing its
methods to detect and ban AI-generated profiles, along with strengthening its
policy on deepfakes and synthetic media. Recently, the Coalition for Content

1 https://blogs.microsoft.com/on-the-issues/2020/09/01/

disinformation-deepfakes-newsguard-video-authenticator/
2 https://www.wired.com/story/facebook-removes-accounts-ai-generated-photos/

https://blogs.microsoft.com/on-the-issues/2020/09/01/disinformation-deepfakes-newsguard-video-authenticator/
https://blogs.microsoft.com/on-the-issues/2020/09/01/disinformation-deepfakes-newsguard-video-authenticator/
https://www.wired.com/story/facebook-removes-accounts-ai-generated-photos/
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Provenance and Authenticity (C2PA) has teamed up with Intel, and Adobe to
develop new standards targeted at combating the proliferation of deepfakes3.

While significant advances have been made towards accurate deepfake detec-
tion, very little is discussed on the fairness of these deepfake detectors across
protected attributes (demographic variations) such as gender and race. Fairness
is defined as the absence of any prejudice or favoritism towards an individual or
a group based on their inherent or acquired characteristics [5,18]. For the mas-
sive commercial roll-out of deep fake detection technology, it is vital to examine
the bias and fairness of this technology across demographics. This is to avoid
any real-world consequences from a biased and flawed system toward a par-
ticular sub-group. As in the common operating scenario, the social media data
across gender and race would be audited at the mass level for authenticity via
an automated deepfake detection system. Even the small performance differen-
tial of deepfake detectors across demographic sub-groups would impact millions
of people belonging to the deprived sub-group.

This draws attention to fairness and bias in AI-based facial analytics where
unintended consequences from biased systems call for a thorough examination
of the datasets and models [18,5,17,8,4]. Most of the published research in this
domain suggests low performance for women, and dark-skinned people for facial
attribute-based classification systems such as gender and age [8,17,30,24], and
face recognition [5,4]. As biased datasets produce biased models, many of the
efforts have been focused on developing gender and race-balanced datasets for
various facial-analysis based applications. FairFace [17], a gender and race bal-
anced facial attribute dataset, RFW [34], a racially balanced face recognition
dataset, and a gender-balanced dataset developed from existing facial recogni-
tion datasets [4] are some of the examples.

This paper aims to examine the fairness of deepfake detectors across gen-
der. However, current deepfake detection datasets are not annotated with demo-
graphic labels to facilitate the examination of bias. To this aim, deepfake datasets
namely FaceForensics++,and Celeb-DF are manually annotated with gender la-
bels. The fairness of popular deepfake detectors is evaluated on these datasets
across gender. On manual annotation, we found that the gender distribution
of the popular deepfake datasets is skewed. The large number of deepfakes in
Faceforensics++ are irregular (in conformance with [32])- when a person’s face
is swapped with the face of another gender or race. This result in the loss of
gender-specific information in the fake content. The popular Celeb-DF dataset
distribution is heavily skewed towards males (70%).

Figure 1 shows the distribution of videos across gender for the popular Face-
Forensics++ [28] and Celeb-DF [21] deepfake datasets. The deepfake detectors
evaluated on these skewed datasets along with irregular swaps mostly obtain
lower performance for females over males. Finally, we introduced a gender-
balanced and annotated deepfake dataset, GBDF, developed from FaceForen-
sics++, Celeb-DF, and DeeperForensics-1.0 and consisting of 10, 000 videos.
This balanced dataset aims to mitigate the performance differential of deepfake

3 https://c2pa.org/post/release_1_pr/

https://c2pa.org/post/release_1_pr/
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detectors due to existing gender unbalanced training sets along with irregular
swaps. The dataset information is available to the vision community to promote
further research and development in this field. Note that according to ISO/IEC
22116 [7], the term “sex”, understood as “the state of being male or female”
would be more appropriate instead of “gender” in the context of this study.
However, in consistency with the existing studies [8,4], the term gender is used
in this paper. To the best of our knowledge, the only study in [32] evaluates
the bias of three popular CNN-based deepfake detectors trained on Faceforen-
sics++ across gender and race. The test bed was created using UTKFace and
RFW datasets and the deepfakes were generated using the Face X-ray model.
The authors reported performance differences for dark-skinned people and em-
phasized the importance of benchmark representation and auditing for increased
demographic transparency.

The main contributions of the paper are as follows:

1. Gender label annotation of the popular deepfake datasets namely, FaceForen-
sics++ and Celeb-DF to facilitate analysis of the dataset distribution across
gender and the presence of irregular swaps.

2. Evaluation of the fairness of popular deepfake detection algorithms varying
in size, architecture, and the methodology, trained and tested on gender
annotated versions of the existing datasets.

3. Development of publicly available gender-balanced and annotated deepfake
dataset, GBDF, from FaceForensics++ (FF++), Celeb-DF, and Deeper
Forensics-1.0 consisting of 10, 000 live and fake videos generated using dif-
ferent identity and expression swapping deepfake generation techniques.

4. Cross-comparison of the performance differential of deepfake detectors trained
on existing and our gender-balanced GBDF training set, across males and
females.

This paper is organized as follows: Section 2 discuss the related work on deep-
fake detectors and gendered differences in facial analytics. Section 3 discusses
the development of the GBDF dataset. Deepfake detection algorithms used in
this study are discussed in Section 4. Evaluation metrics used for fairness anal-
ysis are discussed in Section 5. Results and discussion is detailed in Section 6.
Conclusion and future research directions are discussed in Section 7.

2 Related Work

2.1 Deepfake Detection

In this section, we will discuss the existing countermeasure proposed for deep fake
detection. Most of the existing methods are CNN-based classification baselines
trained for deep fake detection [15,10,25,27].

In [20], Li and Lyu used VGG16, ResNet50, ResNet101, and ResNet152
based CNNs for the detection of the presence of artifacts from the facial regions
and the surrounding areas for deep fake detection. Afchar et al. [1] proposed two
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different CNN architectures composed of only a few layers in order to focus on
the mesoscopic properties of the images: (a) a CNN comprised of 4 convolutional
layers followed by a fully-connected layer (Meso-4), and (b) a modification of
Meso-4 using a variant of the Inception module named MesoInception-4. In [28],
an exhaustive analysis of different CNN-based deep fake detection methods by
Rosslet et al. suggested efficacy of XceptionNet when evaluated on FaceForen-
sics++. In [19], a face X-ray model has been proposed to detect forgery by de-
tecting the blending boundary of a forged image using a two-class CNN model
trained end-to-end.

Apart from the aforementioned CNN-based deep fake detection methods, spa-
tial temporal information using Long Short-term Memory (LSTM) networks [6],
facial and behavioral biometrics (i.e., facial expression, head, and body move-
ment), and lipforensics [14] have been used for deep fake detection [13,2,3,27].
In [14], LipForensics that targets high-level semantic irregularities in mouth
movements common in many generated deepfake videos, is used for deepfake
detection. Studies have also been proposed for improving the performance of
deepfake detectors across datasets and deep fake generation methods using tech-
niques such as reinforcement learning [23] and fine-grained multi-attention net-
work [36]. Readers are referred to the published survey in [31], [26] for detailed
information on deep fake detection methods.

2.2 Gendered Differences in Facial Analytics

There is consensus in the published literature that face analytics-based com-
puter vision applications obtain lower accuracy for females, who often have both
a higher false match and a higher false non-match rate over males [8,4,18,5,17].
Examination of the fairness of the gender classification systems using commercial
SDKs and deep learning-based CNNs suggest lower accuracy rates for females
consistently [18,8]. 2019 Face Recognition Vendor test documents lower female
accuracy rates across a broad range of algorithms and datasets4. Similarly, lower
accuracy rates for females have been obtained for various in-house deep learning-
based face recognition systems [5,4,30]. The cause and effect analysis suggests
gendered hairstyles resulting in facial occlusion, make-up, and inherent lower
variability between different female faces over males to be the factors contribut-
ing to lower performance for females [4,5]. The demographic balanced datasets
have been proven to mitigate the performance differential of different facial anal-
ysis based applications across demographics [4,18,17].

3 GBDF: Gender Balanced DeepFake Dataset

The GBDF dataset is created using FF++(c23 version), Celeb-DF, Deeper
Forensics-1.0 and consist of 10, 000 videos with 5000 each for males and females.

4 https://www.nist.gov/system/files/documents/2019/11/20/frvt_report_

2019_11_19_0.pdf

https://www.nist.gov/system/files/documents/2019/11/20/frvt_report_2019_11_19_0.pdf
https://www.nist.gov/system/files/documents/2019/11/20/frvt_report_2019_11_19_0.pdf
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The FaceForensics++ [28] (FF++) is an automated benchmark for facial manip-
ulation detection. It consists of several manipulated videos created using two dif-
ferent generation techniques: Identity Swapping (FaceSwap, FaceSwap-Kowalski,
FaceShifter, Deep Fakes) and Expression swapping (Face2Face and NeuralTex-
tures). The Celeb-DF [21] deep fake forensic dataset include 590 genuine videos
from 59 celebrities as well as 5639 deep fake videos. Celeb-DF, in contrast to
other datasets, has essentially no splicing borders, color mismatch, and incon-
sistencies in face orientation, among other evident deep fake visual artifacts.
The deep fake videos in Celeb-DF are created using an encoder-decoder style
model which results in better visual quality. The DeeperForensics-1.0 [16] is one
of the largest deep fake datasets used for face forgery detection. It consists of
60, 000 videos that have around 17.6 million frames with substantial real-world
perturbations. The dataset contains videos of 100 consented actors with 35 dif-
ferent perturbations. The real to fake videos ratio is 5:1 and the fake videos are
generated by an end-to-end face-swapping framework.

Gender Label Annotation. As none of these existing deepfake datasets con-
tain demographic information, we manually annotated ground truth gender la-
bels for these datasets. To do so, we annotated each subject with the perceived
gender male, female. Two graduate annotators were selected for the task of gen-
der label annotation. For each subject, the annotators were presented with an
average of 150 frames at various times in the video, which displayed the subject
at different light angles and poses. The gender label was assigned to each video
based on the consensus between the annotators. With the annotated gender la-
bels, we evaluated the percentage of videos belonging to males, and females and
those being irregular face-swaps. Recall that an irregular swap is defined as a
swap where a person’s face is swapped onto another person’s face of a different
gender. All the three datasets provided the IDs for pairs of swaps for all the ma-
nipulation methods, With the help of the available IDs which are unique for all
the identities, we were able to segregate gender labels as well as irregular swaps.
FaceForensics++ has 35.12% of irregular deepfakes. Irregular deepfakes were not
found in Celeb-DF. DeeperForensics-1.0 dataset has negligible number of irregu-
lar swaps. To remain ethnically aware and to maintain demographic information,
irregular swaps from FaceForensics++ and deeperforensics-1.0 datasets are not
included in the GBDF dataset.

The gender annotated version of the live and deepfake videos (excluding irreg-
ular swaps) from these deepfakes datasets are merged to create GBDF dataset.
Deepfakes in the GBDF dataset are created using different Identity Swapping
(i.e., FaceSwap, FaceSwap-Kowalski, FaceShifter, Encoder-decoder style and End-
to-end Face Swapping techniques) and Expression swapping (i.e., Face2Face and
NeuralTextures) deepfake generation techniques. The majority of the videos in
GBDF are from Caucasians. The ratio of real to fake videos in the GBDF dataset
is 1 : 4. The GBDF is further divided into gender-balanced and subject inde-
pendent training and testing subsets in the ratio of 70 : 30. Figure 2 illustrates
the comparison of deepfake videos among existing Deepfake datasets and our
GBDF. The number of videos in GBDF is higher than many of the existing
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deepfake datasets shown on the x axis. The GBDF dataset is publicly available
at: https://github.com/aakash4305/GBDF
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Fig. 2. Illustration of the number of videos in different deepfake datasets along with
our proposed GBDF dataset. The figure contains information about the real to fake
ratio of videos in the datasets along with deepfake video count. The no. of videos in
GBDF is higher than many of the existing deepfake datasets shown on the x-axis.

4 Deepfake Detection Algorithms Used

We investigated fairness of popular deepfake detection models of various sizes,
architectures and the underlying concept, across males and females. Specifically,
we trained MesoInception45, XceptionNet6, EfficientNet V2-L7, LipForensics8

and CNN-LSTM 9 based deepfake detectors.
These models are trained on the popular FF++ dataset(c23 version) and

our proposed GBDF training set. We used the sampling approach described
in [28] to choose 270 frames per video for training and 150 frames per video for
validation and testing of most of the models. The face images were detected and

5 https://github.com/HongguLiu/MesoNet-Pytorch
6 https://github.com/i3p9/deepfake-detection-with-xception
7 https://github.com/d-li14/efficientnetv2.pytorch
8 https://github.com/ahaliassos/LipForensics
9 https://github.com/oidelima/Deepfake-Detection

https://github.com/aakash4305/GBDF
https://github.com/HongguLiu/MesoNet-Pytorch
https://github.com/i3p9/deepfake-detection-with-xception
https://github.com/d-li14/efficientnetv2.pytorch
https://github.com/ahaliassos/LipForensics
https://github.com/oidelima/Deepfake-Detection
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aligned using MTCNN [35] algorithm. MTCNN utilizes a cascaded CNN based
framework for joint face detection and alignment. The images are then resized
to 256 × 256 for both training and evaluation.

For all the CNN-based models, we used a batch-normalization layer followed
by the last fully connected layer of size 1024 and the final output layer for deep
fake classification. The CNN models were trained using an Adam optimizer with
an initial learning rate of 0.001 and a weight decay of 1e6. For CNN-LSTM model,
we chose EfficientNet V2-L as the backbone CNN model due to its superior
performance. The CNN network’s output of 2048 feature vector is fed into the
LSTM layer for deepfake detection. For LipForensics model, following authors
implementation in [14], the network receives 25 grayscale, aligned mouth crops
of size 88 × 88 as input for each video. The input is passed through pretrained
ResNet-18 (pretrained for lipreading task with an initial 3-D convolutional layer)
to obtain output embedding sensitive to mouth motion analysis. A multiscale
temporal convolutional network (MS-TCN) was finetuned to detect fake videos
based on semantically high-level anomalies in mouth motion, which was also
pretrained for lipreading task. All the models were trained on 4 RTX 5000Ti
GPUs with a batch size of 64.

5 Evaluation Metrics

Following the standard evaluation metrics adopted for deepfake detectors, we
used partial AUC (pAUC) (at 10% False Positive Rate (FPR)) and Equal Error
Rate (EER) for the evaluation of performance differences across males and fe-
males. Further, as deepfake detection is a binary classification task, we have also
analyzed binary classification metrics for fairness evaluation across males and
females. Similar to the bias evaluation study on gender classification by Buo-
lamwini et al. [8], we follow the evaluation precedent established by the National
Institute of Standards and Technology (NIST) and assessed the overall classifica-
tion accuracy (ACC), along with the true positive rate (TPR), and false-positive
rate (FPR) for males and females.

6 Results and Analysis

In this section, we examine the fairness of the deepfake detectors, discussed in
section 4, across males and females on FF++, Celeb-DF, GBDF, and an external
DFDC-P [12] test sets. All the evaluation metrics (from section 5) are reported
in the range [0, 1].

6.1 Performance differential of deepfake detectors on FF++ test set

Table 1 shows the performance of the deepfake detectors across males and fe-
males when trained on FF++, GBDF, and tested on FF++. Similarly, Table 2
shows the corresponding ACC, TPR, and FPR values of these models. The top
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Table 1. Evaluation of the DeepFake Detectors Across Males and Females when trained
on FF++, GBDF and tested on FF++. The metrics used are AUC, pAUC and EER.
The performance differential (P.D) is also calculated as the absolute difference between
EER of males and females.

Models Training Dataset
Overall Male Female

P.D↓
AUC pAUC EER AUC pAUC EER AUC pAUC EER

EfficientNet V2-L

FaceForensics++

0.991 0.979 0.024 0.995 0.986 0.019 0.987 0.972 0.029 0.010
XceptionNet 0.985 0.969 0.037 0.987 0.975 0.029 0.983 0.963 0.045 0.016

MesoInception-4 0.857 0.832 0.229 0.863 0.837 0.221 0.851 0.827 0.237 0.016
CNN-LSTM 0.987 0.972 0.032 0.991 0.979 0.024 0.983 0.967 0.039 0.015
LipForensics 0.990 0.977 0.027 0.987 0.975 0.031 0.993 0.979 0.023 0.008

EfficientNet V2-L

GBDF

0.925 0.902 0.136 0.935 0.917 0.121 0.915 0.888 0.140 0.019
XceptionNet 0.906 0.886 0.176 0.912 0.892 0.172 0.899 0.880 0.180 0.008

MesoInception-4 0.806 0.785 0.264 0.813 0.794 0.259 0.799 0.775 0.269 0.010
CNN-LSTM 0.918 0.897 0.141 0.910 0.890 0.150 0.926 0.904 0.132 0.018
LipForensics 0.932 0.917 0.122 0.937 0.921 0.117 0.928 0.913 0.128 0.011

performance results are highlighted in bold across various evaluation datasets.
EfficientNet V2-L obtained the best results with an overall AUC of 0.991, EER
of 0.024, and ACC of 0.975 when trained and tested on FF++.

When trained on FF++, the overall difference in the performance is 0.009
and 0.010 in terms of pAUC and EER, respectively, across males and females.
Males outperformed females for the majority of the models despite having a
lower percentage than females in FF++ training set. The reason is 35.12% of
the videos in FF++ are irregular deepfakes, it is not certain which gender-group-
related features are dominant in irregular facial swaps. The overall difference
in ACC, TPR, and FPR is 0.006,0.0036, and 0.020, respectively, across males
and females (see Table 2). The least performance differential is obtained by
LipForensics model when trained and tested on FF++.

When trained on GBDF, the overall difference in the performance is 0.010
and 0.006 in terms of pAUC and EER, respectively, across males and females.
The overall difference in ACC, TPR, and FPR was reduced to 0.011, 0.006 and
0.009, respectively, across males and females (see Table 2). XceptionNet model
obtained the least performance differential when trained on GBDF and tested
on FF++.

Therefore, the overall difference in EER and FPR was reduced to 0.04 and
0.011, respectively, when using GBDF over FF++ as the training set. Using
GBDF as the training set, the highest bias mitigation is observed for XceptionNet
with the EER difference reduced from 0.016 to 0.008 across gender. Most of the
detectors obtained lower error rates when trained on FF++. This is obvious as
the test bed is also FF++. The performance of most of the models dropped
when trained using GBDF due to domain shift i.e., the data distribution change
between the training (GBDF) and testing set (FF++). This is due to change
in the image quality of real videos and deep fakes due to advances in sensor
technology and the deep fake generation techniques. The GBDF dataset has an
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Table 2. ACC, TPR and FPR of the DeepFake Detectors Across Males and Females
when trained on FF++, GBDF and tested on FF++. When trained on GBDF, the
drop in the performance of the models is due to domain shift. The GBDF dataset
consist of higher number of deepfake generation techniques over FF+.

Models Training Datasets
Overall Male Female

ACC TPR FPR ACC TPR FPR ACC TPR FPR

EfficientNet V2-L

FaceForensics++

0.975 0.952 0.091 0.979 0.955 0.058 0.971 0.949 0.119
XceptionNet 0.969 0.942 0.128 0.971 0.947 0.109 0.967 0.937 0.139

MesoInception-4 0.825 0.805 0.256 0.834 0.813 0.245 0.816 0.797 0.267
CNN-LSTM 0.971 0.945 0.115 0.976 0.954 0.093 0.966 0.936 0.137
LipForensics 0.972 0.948 0.115 0.967 0.941 0.143 0.978 0.955 0.086

EfficientNet V2-L

GBDF

0.903 0.887 0.182 0.912 0.895 0.175 0.892 0.879 0.187
XceptionNet 0.888 0.869 0.189 0.897 0.876 0.181 0.879 0.862 0.195

MesoInception-4 0.783 0.769 0.284 0.794 0.778 0.276 0.772 0.760 0.292
CNN-LSTM 0.896 0.875 0.185 0.887 0.861 0.189 0.905 0.889 0.178
LipForensics 0.912 0.896 0.176 0.919 0.901 0.169 0.905 0.891 0.183

additional number of deepfake generation techniques (based on encoder-decoder
style and the end-to-end face swapping framework) over FF++.

6.2 Performance differential of deepfake detectors on Celeb-DF test
set

Table 3. Evaluation of the DeepFake Detectors Across Males and Females when trained
on FF++, GBDF and tested on Celeb-DF. The metrics used are AUC, pAUC and
EER. The performance differential (P.D) is also calculated as the absolute difference
between EER of males and females.

Models Training Dataset
Overall Male Female

P.D↓
AUC pAUC EER AUC pAUC EER AUC pAUC EER

EfficientNet V2-L

FaceForensics++

0.658 0.635 0.379 0.667 0.645 0.372 0.649 0.625 0.386 0.014
XceptionNet 0.651 0.629 0.383 0.657 0.634 0.379 0.645 0.623 0.390 0.011

MesoInception-4 0.544 0.519 0.459 0.558 0.528 0.442 0.530 0.510 0.476 0.034
CNN-LSTM 0.675 0.656 0.359 0.686 0.662 0.348 0.664 0.650 0.370 0.022
LipForensics 0.821 0.795 0.254 0.829 0.805 0.242 0.813 0.785 0.266 0.024

EfficientNet V2-L

GBDF

0.861 0.844 0.235 0.869 0.853 0.228 0.853 0.835 0.242 0.014
XceptionNet 0.864 0.847 0.233 0.872 0.855 0.226 0.856 0.839 0.240 0.014

MesoInception-4 0.742 0.725 0.298 0.755 0.735 0.292 0.730 0.715 0.305 0.013
CNN-LSTM 0.887 0.869 0.215 0.898 0.875 0.209 0.876 0.863 0.221 0.012
LipForensics 0.908 0.885 0.175 0.917 0.896 0.163 0.900 0.874 0.187 0.024

Table 3 shows the performance differential of the deepfake detectors when
trained on FF++, GBDF, and tested on Celeb-DF. Similarly, Table 4 shows
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the corresponding ACC, TPR, and FPR values for these models. The top per-
formance results are highlighted in bold across various evaluation datasets. The
LipForensics model obtained the best results with an overall AUC of 0.908, EER
of 0.175, and ACC of 0.889 when trained on GBDF and tested on Celeb-DF.

When trained on FF++, the overall difference in the performance is 0.0162
and 0.021 in terms of pAUC and EER, respectively, across males and females.
The overall difference in ACC, TPR and FPR is 0.019,0.02 and 0.021, respec-
tively, across males and females (see Table 4). The least performance differential
is obtained by XceptionNet when trained on FF++ and tested on Celeb-DF.

When trained on GBDF, the overall difference in the performance is 0.017 and
0.015 in terms of pAUC and EER, respectively, across males and females. The
overall difference in ACC, TPR and FPR is 0.018,0.01 and 0.018, respectively,
across males and females (see Table 4). The least performance differential is
obtained by CNN-LSTM when trained on GBDF and tested on Celeb-DF.

Therefore, the difference in AUC, EER, TPR, and FPR is reduced to 0.001,
0.006, 0.01, and 0.003, respectively, when using GBDF as a training set over
FF++. Using GBDF, the highest bias mitigation is observed for MesoInceptionNet-
4 model with the EER difference reduced from 0.034 to 0.013 across gender.
The overall performance of all the models increased when trained on GBDF
over FF++ because of the presence of higher number of deepfake generation
techniques. It is worth noting that the training and testing subset of
GBDF and Celeb-DF, respectively, has no subject overlap. This ex-
periment points out the merit of using a demographically balanced dataset for
deepfake detection.

Table 4. ACC, TPR and FPR of the DeepFake Detectors Across Males and Females
when trained on FF++, GBDF and tested on Celeb-DF.

Models Training Datasets
Overall Male Female

ACC TPR FPR ACC TPR FPR ACC TPR FPR

EfficientNet V2-L

FaceForensics++

0.637 0.604 0.385 0.650 0.614 0.372 0.626 0.594 0.398
XceptionNet 0.629 0.602 0.395 0.635 0.609 0.383 0.623 0.595 0.402

MesoInception-4 0.525 0.502 0.437 0.534 0.518 0.422 0.516 0.486 0.455
CNN-LSTM 0.652 0.609 0.367 0.664 0.615 0.359 0.640 0.600 0.379
LipForensics 0.798 0.774 0.275 0.807 0.785 0.271 0.791 0.763 0.282

EfficientNet V2-L

GBDF

0.843 0.825 0.242 0.849 0.833 0.239 0.837 0.817 0.246
XceptionNet 0.847 0.825 0.240 0.854 0.834 0.232 0.840 0.816 0.251

MesoInception-4 0.718 0.701 0.324 0.733 0.712 0.309 0.703 0.690 0.340
CNN-LSTM 0.863 0.849 0.225 0.876 0.854 0.211 0.850 0.844 0.235
LipForensics 0.889 0.866 0.187 0.895 0.878 0.183 0.883 0.854 0.193
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Table 5. Evaluation of the DeepFake Detectors Across Males and Females when trained
on FF++, GBDF and tested on GBDF. The metrics used are AUC, pAUC and EER.
The performance differential (P.D) is calculated as the absolute difference between
EER of males and females.

Models Training Dataset
Overall Male Female

P.D↓
AUC pAUC EER AUC pAUC EER AUC pAUC EER

EfficientNet V2-L

FaceForensics++

0.904 0.889 0.179 0.912 0.897 0.171 0.896 0.879 0.187 0.016
XceptionNet 0.889 0.868 0.217 0.902 0.885 0.206 0.876 0.850 0.228 0.022

MesoInception-4 0.769 0.747 0.286 0.759 0.742 0.295 0.779 0.750 0.277 0.018
CNN-LSTM 0.909 0.888 0.177 0.917 0.898 0.161 0.901 0.877 0.192 0.031
LipForensics 0.942 0.926 0.109 0.938 0.922 0.113 0.947 0.929 0.105 0.008

EfficientNet V2-L

GBDF

0.967 0.943 0.052 0.972 0.948 0.050 0.962 0.938 0.054 0.004
XceptionNet 0.972 0.952 0.046 0.979 0.956 0.043 0.965 0.948 0.049 0.006

MesoInception-4 0.819 0.800 0.256 0.828 0.805 0.250 0.811 0.795 0.264 0.014
CNN-LSTM 0.975 0.957 0.044 0.983 0.964 0.038 0.967 0.950 0.050 0.012
LipForensics 0.978 0.954 0.039 0.982 0.958 0.036 0.974 0.950 0.042 0.006

6.3 Performance differential of deepfake detectors on GBDF and
DFDC-P test sets

Table 5 shows the performance of the deepfake detectors across males and fe-
males when trained on FF++, GBDF, and tested on GBDF subject independent
test set. Similarly, Table 6 shows the ACC, TPR, and FPR values associated with
these models. The LipForensics model obtained the best results with an overall
AUC of 0.978, EER of 0.039, and ACC of 0.967 when trained and tested on
GBDF.

When trained on FF++, the overall difference in the performance is 0.012 and
0.0092 in terms of pAUC and EER, respectively, across males and females. The
overall difference in ACC, TPR and FPR is 0.010, 0.0112 and 0.012, respectively,
across males and females (see Table 6). The least performance differential is
obtained by EfficientNet V2-L when trained on FF++ and tested on GBDF.

When trained on GBDF, the overall difference in the performance is 0.010 and
0.008 in terms of pAUC and EER, respectively, across males and females. The
overall difference in ACC, TPR and FPR is 0.008,0.010 and 0.009, respectively,
across males and females (see Table 6). The least performance differential is
obtained by the LipForensics model when trained and tested on GBDF.

Therefore, the difference in ACC, EER, TPR, and FPR decreased by 0.002,
0.001, 0.0012, and 0.003, respectively, when using balanced GBDF as training
and testing sets. Using balanced GBDF as a training and testing set, the highest
bias mitigation is observed for CNN-LSTM and XceptionNet models. For CNN-
LSTM, the difference in EER across gender reduced from 0.031 to 0.012 when
trained with FF++ over GBDF as the training set (the test set is GBDF).
Similarly, for XceptionNet, the difference in EER across gender reduced from
0.022 to 0.006 when trained with FF++ over GBDF as the training set (the
test set is GBDF). Recall that the subjects do not overlap between the training
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Table 6. ACC, TPR and FPR of the DeepFake Detectors Across Males and Females
when trained on FF++, GBDF and tested on GBDF test set.

Models Training Datasets
Overall Male Female

ACC TPR FPR ACC TPR FPR ACC TPR FPR

EfficientNet V2-L

FaceForensics++

0.880 0.858 0.205 0.895 0.869 0.194 0.865 0.847 0.220
XceptionNet 0.865 0.841 0.222 0.878 0.854 0.209 0.852 0.828 0.235

MesoInception-4 0.745 0.721 0.288 0.735 0.715 0.295 0.754 0.727 0.275
CNN-LSTM 0.883 0.868 0.195 0.894 0.884 0.187 0.872 0.854 0.209
LipForensics 0.925 0.905 0.178 0.920 0.899 0.180 0.930 0.910 0.175

EfficientNet V2-L

GBDF

0.948 0.935 0.154 0.951 0.939 0.149 0.945 0.930 0.159
XceptionNet 0.955 0.941 0.144 0.958 0.947 0.139 0.952 0.935 0.147

MesoInception-4 0.802 0.778 0.282 0.808 0.788 0.275 0.796 0.770 0.287
CNN-LSTM 0.953 0.939 0.148 0.959 0.941 0.144 0.949 0.935 0.154
LipForensics 0.967 0.949 0.142 0.971 0.953 0.135 0.965 0.946 0.145

and testing set of GBDF. Further, the samples in the training and testing set of
GBDF are from three different deepfake datasets.

Table 7. Evaluation of the DeepFake Detectors Across Males and Females when trained
on FF++, GBDF and tested on DFDC-P. The metrics used are AUC, pAUC and
EER. The performance differential (P.D) is calculated as the absolute difference be-
tween EER of males and females.

Models Training Dataset
Overall Male Female

P.D↓
AUC pAUC EER AUC pAUC EER AUC pAUC EER

EfficientNet V2-L

FaceForensics++

0.659 0.634 0.378 0.665 0.641 0.374 0.653 0.626 0.384 0.010
XceptionNet 0.642 0.624 0.391 0.649 0.632 0.384 0.635 0.617 0.398 0.014

MesoInception-4 0.619 0.597 0.421 0.609 0.591 0.432 0.630 0.605 0.410 0.022
CNN-LSTM 0.667 0.648 0.372 0.675 0.661 0.356 0.659 0.635 0.382 0.026
LipForensics 0.718 0.705 0.312 0.724 0.710 0.306 0.712 0.701 0.319 0.013

EfficientNet V2-L

GBDF

0.684 0.662 0.349 0.689 0.665 0.345 0.680 0.661 0.354 0.009
XceptionNet 0.668 0.652 0.368 0.675 0.657 0.363 0.663 0.649 0.374 0.011

MesoInception-4 0.615 0.592 0.427 0.621 0.596 0.419 0.608 0.585 0.432 0.013
CNN-LSTM 0.689 0.665 0.343 0.683 0.658 0.350 0.694 0.674 0.334 0.016
LipForensics 0.732 0.721 0.299 0.736 0.724 0.292 0.727 0.716 0.307 0.015

Table 7 shows the performance of the deepfake detectors across males and
females when trained on FF++, GBDF, and tested on DFDC-P. Note that
DFDC-P dataset has not been used in the creation of the GBDF
dataset. As the original DFDC-P test set does not contain subject IDs, the
subset of DFDC training set is manually annotated with gender labels and used
as a test set for this study. Overall, low performance is obtained for all the
models on DFDC dataset. This is because DFDC consist of low quality videos
that are diverse across gender, skin-tone and age-group. The LipForensics model
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obtained the best results with an overall AUC of 0.732, EER of 0.299 when
tested on DFDC-P.

When trained on FF++, the overall difference in the performance is 0.010
and 0.0082 in terms of pAUC and EER, respectively, across males and females.
The least performance differential is obtained by EfficientNet V2-L when trained
on FF++ and tested on DFDC-P.

When trained on GBDF, the overall difference in the performance is 0.004
and 0.007 in terms of pAUC and EER, respectively, across males and females.
The least performance differential is obtained by EfficientNet V2-L when trained
on GBDF and tested on DFDC-P. These results suggest that using our gender-
balanced GBDF training set, bias is mitigated across gender even on an external
DFDC-P dataset, not used in the creation of GBDF.

(a) Real Images

(b) Fake Images

Fig. 3. Grad-CAM visualization of the EfficientNet V2-L based deepfake detector on
randomly selected live and fake samples from males and females. The distinctive image
regions used by the CNN model for deepfake detection differs across gender.

Finally, we also used Explainable AI (XAI) based Gradient weighted Class
Activation Mapping (Grad-CAM) [29] visualization to understand the distinc-
tive image regions used by the CNN models in detecting deepfakes across gen-
der. GRAD-CAM uses the gradients of any target concept to generate a coarse
localization map that highlights distinctive image regions used for making a
decision/prediction [29]. Figure 3 shows the GRAD-CAM visualization of the
EfficientNet V2-L-based deepfake detector for live and fake images for males
and females. This detector was trained on GBDF dataset. The highly activated
region is shown by the red zone on the map, followed by green and blue zones.
It can be seen that the highly activated region is the cheek for females and the
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ocular region for males. For fake images, the mouth and cheek region for males
and the complete face region for females are the most activated region. These
results were consistent across the datasets depending on the deepfake generation
technique. Therefore, different image regions were used by the deepfake detector
for live and fake classification across gender.

In summary, males outperformed females for most of the models, with the
disparity of about 0.034 in terms of EER in the range [0, 1] for MesoInception-
4 model. The shallow MesoInception-4 model demonstrated high performance
differential across gender for most of the experiments. The LipForensics model,
on the other hand, obtained least disparity across gender for most of the exper-
iments. This is because it uses mouth crops for mouth motion analysis. Thus
the impact of gendered differences in facial images attributed to bias are mit-
igated to a major extent. When trained on FF+, males outperformed females
for the majority of the models despite having a lower percentage than females.
As large number of the videos in FaceForensics++ are irregular deepfakes, it
is not certain which gender-group-related features are dominant in irregular fa-
cial swaps. The gender-balanced GBDF training set reduced the performance
difference over FF++, with the highest being from 0.031 to 0.012 in terms of
EER across males and females when tested on GBDF test set. The advantage
of using GBDF training set towards gender fair deepfake classification is also
noticed for an external DFDC-P set. The grad-CAM visualization suggests the
distinctive image regions used by the CNN model for deepfake classification dif-
fers across gender. As these automated deepfake detection systems are used at
the mass-level for audit of the social media data, even a small reduction in the
bias across demographics would positively impact millions of people belonging
to the deprived sub-group.

7 Conclusion and Future Research Directions

With the volume of deepfake videos showing staggering growth, there is a grow-
ing reliance on automated systems to combat deepfakes. For the massive rollout
of this high-impact technology, it becomes vital to understand all the societal
aspects including demographic disparities. In this work, we thoroughly exam-
ined the fairness of the deepfake detectors on gender-aware deepfake datasets.
On manual annotation of gender labels, we found that current deepfake datasets
have a highly skewed distribution across gender and contain irregular swaps. The
popular deepfake detectors have exhibited disparities in the performance across
gender when evaluated on gender-aware datasets, with mostly males outperform-
ing females. This suggest an additional threat imposed by deep fake technology
on female subjects, primarily due to the performance differential of SOTA deep
fake detectors.

However, using our gender-balanced GBDF dataset, the unequal performance
of the deepfake detectors across gender is mitigated to some extent. Our work
echoes the importance of benchmarking demographically balanced and labeled
deepfake datasets to facilitate intersectional subgroup-based audits of existing
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deepfake detectors along with the cause and effect analysis. As a part of fu-
ture work, fairness of the deepfake detectors will also be evaluated across race.
Further, the fairness-aware deepfake detectors will be developed for increased
demographic transparency and accountability of these high-impact systems.
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