Skip to main content

New Method for Automating the Diagnostic Analysis of Human Fundus Images Produced by Optical Coherent Tomography Angiography. Research and Software Kit Realization

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Abstract

This article presents the results of the joint work of specialists in the field of image analysis and ophthalmologists on the task of analyzing images obtained by the method of optical coherence tomography angiography. A descriptive algorithmic scheme for analyzing images obtained using optical coherence tomography angiography is built to automate the detection of pathological changes in the morphometric characteristics of the fundus. The algorithmic scheme is based on the methods of image processing, analysis, and recognition. The previously developed feature space is supplemented and modified, based on which it is possible to identify pathological changes in the structure of the choroid plexuses of the human retina. It was possible to improve the accuracy of classifying images of healthy and pathological eyes, as well as significantly increasing the accuracy of classification of borderline cases. Software is created that makes it possible to accurately carry out differential diagnostics of the normal state of vessels from the pathological one in the offline mode, which increases its diagnostic value. It is planned to achieve higher classification accuracy results for all three cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheung, N., Mitchell, P., Wong, T.Y.: Diabetic retinopathy. Lancet 376, 124–146 (2010). https://doi.org/10.1016/S0140-6736(09)62124-3

    Article  Google Scholar 

  2. Chu, Z.:  Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. J. Biomed. Opt. 21, 066008 (2016). https://doi.org/10.1117/1.JBO.21.6.066008

  3. Dedov, I., Shestakova, M., Vikulova, O.: Epidemiology of diabetes mellitus in russian federation: clinical and statistical report according to the federal diabetes registry. Diabetes Mellitus 20(1), 13–41 (2017). https://doi.org/10.14341/DM8664

  4. Fong, D.S., Gottlieb, J., Ferris, F.L., Klein, R.: Understanding the value of diabetic retinopathy screening. Arch. Ophthalmol. 119, 758–760 (2001). https://doi.org/10.1001/archopht.15.758

    Article  Google Scholar 

  5. Gildea, D.: The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: a systematic review. Int. Ophthalmol. 39(10), 2413–2433 (2018). https://doi.org/10.1007/s10792-018-1034-8

    Article  Google Scholar 

  6. Gurevich, I.B.,  Harazishvili, D.V., Salvetti, O., Trykova, A.A., Vorob’ev, I.A.:  Elements of the information technology of cytological specimens analysis: Taxonomy and factor analysis. Pattern Recognit. Image Anal. 16, 114–116 (2006). https://doi.org/10.1134/S1054661806010366

  7. Gurevich, I.B., et al.: Development and experimental investigation of mathematical methods for automating the diagnostics and analysis of ophthalmological images. Pattern Recognit. Image Anal. 28, 612–636 (2018). https://doi.org/10.1134/S1054661818040120

    Article  Google Scholar 

  8. Gurevich, I.B., Yashina, V.V., Fedorov, A.A., Nedzved, A.M., Tleubaev, A.T.: Development, investigation, and software implementation of a new mathematical method for automatizing analysis of corneal endothelium images. Pattern Recognit. Image Anal. 27, 550–559 (2017). https://doi.org/10.1134/S1054661817030130

    Article  Google Scholar 

  9. Gurevich, I.B., Yashina, V.V., Fedorov, A.A., Nedzved, A.M., Ospanov, A.M.: Development, investigation, and software implementation of a new mathematical method for automated identification of the lipid layer state by the images of eyelid intermarginal space. Pattern Recognit. Image Anal. 27, 538–549 (2017). https://doi.org/10.1134/S1054661817030129

    Article  Google Scholar 

  10. Gurevich, I.B., Zhuravlev, Y., Myagkov, A.A., Trusova, Y., Yashina, V.V.: On basic problems of image recognition in neurosciences and heuristic methods for their solution. Pattern Recognit. Image Anal. 25, 132–160 (2015). https://doi.org/10.1134/S105466181501006X

    Article  Google Scholar 

  11. Gurevich, I., Yashina, V.: Basic models of descriptive image analysis. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12665, pp. 275–288. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68821-9_26

    Chapter  Google Scholar 

  12. Gurevich, I.B., et al.: A new method for automating the diagnostic analysis of human fundus images obtained using optical coherent tomography angiography. Pattern Recognit. Image Anal. 31, 513–528 (2021). https://doi.org/10.1134/S1054661821030111

    Article  Google Scholar 

  13. Hirano, T., et al.: Vitreoretinal interface slab in OCT angiography for detecting diabetic retinal neovascularization. Ophthalmol. Retina 4, 588–594 (2020). https://doi.org/10.1016/j.oret.2020.01.004

    Article  Google Scholar 

  14. Hirano, T., Kitahara, J., Toriyama, Y., Kasamatsu, H., Murata, T., Sadda, S.: Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br. J. Ophthalmol. 103, 216–221 (2019). https://doi.org/10.1136/bjophthalmol-2018-311942

    Article  Google Scholar 

  15. Soares, J.V.B., Leandro, J.J.G., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25, 1214–1222 (2006). https://doi.org/10.1109/TMI.2006.879967

    Article  Google Scholar 

  16. Nedzvedz, O.V., Ablameyko, S.V., Gurevich, I.B., Yashina, V.V.: A new method for automazing of stem cell populations investigation based on the integral optical flow of a video sequence analysis. Pattern Recognit. Image Anal. 27, 599–609 (2017). https://doi.org/10.1134/S1054661817030221

    Article  Google Scholar 

  17. Olvera-Barrios, A., et al.: Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field truecolour confocal scanning and standard digital retinal images. Br. J. Ophthalmol. 105, 265–270 (2020). https://doi.org/10.1136/bjophthalmol-2019-315394

    Article  Google Scholar 

  18. Otsu, N.:  A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9, 62– 66 (1979). https://doi.org/10.1109/TSMC.1979.4310076

  19. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recognit. 33, 225–236 (2000). https://doi.org/10.1016/S0031-3203(99)00055-2

    Article  Google Scholar 

  20. Sinclair, S.H., Delvecchio, C.: The internist’s role in managing diabetic retinopathy: Screening for early detection. Cleveland Clin. J. Med. 71, 151–159 (2004). https://doi.org/10.3949/ccjm.71.2.151

    Article  Google Scholar 

  21. Zha, H., Chen, X., Wang, L., Miao, Q. (eds.): CCCV 2015. CCIS, vol. 546. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48558-3

    Book  Google Scholar 

  22. Spaide, R.F., Fujimoto, J.G., Waheed, N.K., Sadda, S.R., Staurenghi, G.: Optical coherence tomography angiography. Prog. Retinal Eye Res. 64, 1–55 (2018). https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  Google Scholar 

  23. Spaide, R.F.: Volume-rendered optical coherence tomography of diabetic retinopathy pilot study. Am. J. Ophthalmol. 160, 1200–1210 (2015). https://doi.org/10.1016/j.ajo.2015.09.010

    Article  Google Scholar 

  24. Untracht, G.R., et al.: OCTAVA: An open-source toolbox for quantitative analysis of optical coherence tomography angiography images. PLoS ONE 16, e0261052 (2021). https://doi.org/10.1371/journal.pone.0261052

    Article  Google Scholar 

  25. Vermeer, K.A., Vos, F.M., Lemij, H.G., Vossepoel, A.M.: A model based method for retinal blood vessel detection. Comput. Biol. Med. 34, 209–219 (2004). https://doi.org/10.1016/S0010-4825(03)00055-6

    Article  Google Scholar 

  26. Vujosevic, S., et al.: Screening for diabetic retinopathy: New perspectives and challenges. Lancet Diabetes Endocrinol. 8, 337–347 (2020). https://doi.org/10.1016/S2213-8587(19)30411-5

    Article  Google Scholar 

  27. Yao, X., Alam, M.N., Le, D., Toslak, D.: Quantitative optical coherence tomography angiography: A review. Exp. Biol. Med. 245, 301–312 (2020). https://doi.org/10.1177/1535370219899893

    Article  Google Scholar 

  28. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40, 438–445 (2010). https://doi.org/10.1016/j.compbiomed.2010.02.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yashina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurevich, I.B., Yashina, V.V., Tleubaev, A.T. (2023). New Method for Automating the Diagnostic Analysis of Human Fundus Images Produced by Optical Coherent Tomography Angiography. Research and Software Kit Realization. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics