Abstract
In medical practice it is often necessary to jointly analyze differently stained histological sections. However, when slides are being prepared tissues are subjected to deformations and registration is highly required. Although the transformation between images is generally non-rigid, one of the most challenging subproblems is to calculate the initial affine transformation. Existing learning-based approaches adopt convolutional architectures that are usually limited in receptive field, while global context should be considered. Coupled with small datasets and unsupervised learning paradigm, this results in overfitting and adjusting the structure only locally. We introduce transformer-based affine histological image registration (TAHIR) approach. It successfully aggregates global information, requires no histological data to learn and is based on knowledge transfer from nature domain. The experiments show that TAHIR outperforms existing methods by a large margin on most-commonly used histological image registration benchmark in terms of target registration error, being more robust at the same time. The code is available at https://github.com/VladPyatov/ImgRegWithTransformers.
The work was supported by Russian Science Foundation grant 22-41-02002.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abdelsamea, M.M., Zidan, U., Senousy, Z., Gaber, M.M., Rakha, E., Ilyas, M.: A survey on artificial intelligence in histopathology image analysis. Wiley Interdisc. Rev. Data Min. Knowl. Discovery, e1474 (2022)
Anoshina, N.A., Krylov, A.S., Sorokin, D.V.: Correlation-based 2D registration method for single particle cryo-EM images. In: Proceedings of the IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6 (2017)
Arganda-Carreras, I., Fernandez-Gonzalez, R., Ortiz-de Solorzano, C.: Automatic registration of serial mammary gland sections. In: The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 1691–1694 (2004)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Borovec, J., et al.: ANHIR: automatic non-rigid histological image registration challenge. IEEE Trans. Med. Imaging 39(10), 3042–3052 (2020)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Ceritoglu, C., Wang, L., Selemon, L.D., Csernansky, J.G., Miller, M.I., Ratnanather, J.T.: Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images. Frontiers Hum. Neurosci., 43 (2010)
Chee, E., Wu, Z.: AIRNet: self-supervised affine registration for 3D medical images using neural networks. arXiv preprint arXiv:1810.02583 (2018)
Cooper, L., Sertel, O., Kong, J., Lozanski, G., Huang, K., Gurcan, M.: Feature-based registration of histopathology images with different stains: an application for computerized follicular lymphoma prognosis. Comput. Methods Programs Biomed. 96(3), 182–192 (2009)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5828–5839 (2017)
De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Gupta, L., Klinkhammer, B.M., Boor, P., Merhof, D., Gadermayr, M.: Stain independent segmentation of whole slide images: a case study in renal histology. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1360–1364 (2018)
Khvostikov, A., Krylov, A., Mikhailov, I., Malkov, P., Danilova, N.: Tissue type recognition in whole slide histological images. CEUR Workshop Proc. 3027, 50 (2021). https://doi.org/10.20948/graphicon-2021-3027-496-507
Li, X., Han, K., Li, S., Prisacariu, V.: Dual-resolution correspondence networks. Adv. Neural. Inf. Process. Syst. 33, 17346–17357 (2020)
Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2041–2050 (2018)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022 (2021)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Mikhailov, I., Khvostikov, A., Krylov, A.S., Malkov, P., Danilova, N., Oleynikova, N.: Development of CNN-based algorithm for automatic recognition of the layers of the wall of the stomach and colon. Virchows Arch. 479(Suppl 1), OFP-15-004 (2021). https://doi.org/10.1007/s00428-021-03157-8
Obando, D.F.G., Frafjord, A., Øynebråten, I., Corthay, A., Olivo-Marin, J.C., Meas-Yedid, V.: Multi-staining registration of large histology images. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 345–348 (2017)
Pichat, J., Iglesias, J.E., Yousry, T., Ourselin, S., Modat, M.: A survey of methods for 3D histology reconstruction. Med. Image Anal. 46, 73–105 (2018)
Pyatov, V., Sorokin, D.: Affine registration of histological images using transformer-based feature matching. Pattern Recogn. Image Anal. 32(3), 626–630 (2022). https://doi.org/10.1134/S1054661822030324
Rocco, I., Arandjelović, R., Sivic, J.: Efficient neighbourhood consensus networks via submanifold sparse convolutions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 605–621. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_35
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4938–4947 (2020)
Sorokin, D.V., Tektonidis, M., Rohr, K., Matula, P.: Non-rigid contour-based temporal registration of 2D cell nuclei images using the Navier equation. In: IEEE 11th International Symposium on Biomedical Imaging (ISBI 2014), pp. 746–749 (2014)
Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8922–8931 (2021)
Tang, S., Zhang, J., Zhu, S., Tan, P.: Quadtree attention for vision transformers. arXiv preprint arXiv:2201.02767 (2022)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wodzinski, M., Müller, H.: Learning-based affine registration of histological images. In: International Workshop on Biomedical Image Registration, pp. 12–22 (2020)
Wodzinski, M., Müller, H.: DeepHistReg: unsupervised deep learning registration framework for differently stained histology samples. Comput. Methods Programs Biomed. 198, 105799 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Pyatov, V.A., Sorokin, D.V. (2023). TAHIR: Transformer-Based Affine Histological Image Registration. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-37742-6_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37741-9
Online ISBN: 978-3-031-37742-6
eBook Packages: Computer ScienceComputer Science (R0)