Abstract
We provide a complete description of our investigation into specialized visual descriptors application as a part of combined classifier architecture for advertising signboards photographs classification problem. We propose novel types of descriptors (pure convolutional neural networks based and based on trainable parametrized agent movement strategies) showing the state of the art results in the extraction of visual characteristics and related semantics of text fonts presented on a sign. To provide comparisons of developed approaches and its effectiveness examination we used two datasets of commercial building facade photographs grouped by the type of presented business.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ballan, L., Bertini, M., Bimbo, A.D., Jain, A.: Automatic trademark detection and recognition in sport videos. In: 2008 IEEE International Conference on Multimedia and Expo, pp. 901–904, June 2008. https://doi.org/10.1109/ICME.2008.4607581
Chacra, D.A., Zelek, J.: Road segmentation in street view images using texture information. In: 2016 13th Conference on Computer and Robot Vision (CRV), pp. 424–431, June 2016. https://doi.org/10.1109/CRV.2016.47
Chattopadhyay, T., Sinha, A.: Recognition of trademarks from sports videos for channel hyperlinking in consumer end. In: 2009 IEEE 13th International Symposium on Consumer Electronics, pp. 943–947, May 2009. https://doi.org/10.1109/ISCE.2009.5156881
Clavelli, A., Karatzas, D.: Text segmentation in colour posters from the Spanish civil war era. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 181–185, July 2009. https://doi.org/10.1109/ICDAR.2009.32
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, June 2009. https://doi.org/10.1109/CVPR.2009.5206848
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)
Intasuwan, T., Kaewthong, J., Vittayakorn, S.: Text and object detection on billboards. In: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 6–11, July 2018. https://doi.org/10.1109/ICITEED.2018.8534879
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, T., Fang, S., Zhao, Y., Wang, P., Zhang, J.: Implementation of training convolutional neural networks. CoRR abs/1506.01195 (2015)
Malykh, V., Samarin, A.: Combined advertising sign classifier. In: van der Aalst, W.M.P., et al. (eds.) AIST 2019. LNCS, vol. 11832, pp. 179–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37334-4_16
Romberg, S., Pueyo, L.G., Lienhart, R., van Zwol, R.: Scalable logo recognition in real-world images. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR 2011, pp. 25:1–25:8. ACM, New York, NY, USA (2011). http://doi.acm.org/10.1145/1991996.1992021. http://www.multimedia-computing.de/flickrlogos/
Samarin, A., Malykh, V.: Worm-like image descriptor for signboard classification. In: Proceedings of The Fifth Conference on Software Engineering and Information Management (SEIM-2020) (2020)
Samarin, A., Malykh, V.: Ensemble-based commercial buildings facades photographs classifier. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020. LNCS, vol. 12602, pp. 257–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72610-2_19
Samarin, A., Malykh, V., Muravyov, S.: Specialized image descriptors for signboard photographs classification. In: Robal, T., Haav, H.-M., Penjam, J., Matulevičius, R. (eds.) DB &IS 2020. CCIS, vol. 1243, pp. 122–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57672-1_10
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Smith, R.: An overview of the tesseract OCR engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633, September 2007. https://doi.org/10.1109/ICDAR.2007.4376991
Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015. https://doi.org/10.1109/CVPR.2015.7298594
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI Conference on Artificial Intelligence (2016)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tian, Z., Huang, W., He, T., He, P., Qiao, Yu.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4
Tsai, T., Cheng, W., You, C., Hu, M., Tsui, A.W., Chi, H.: Learning and recognition of on-premise signs from weakly labeled street view images. IEEE Trans. Image Process. 23(3), 1047–1059 (2014). https://doi.org/10.1109/TIP.2014.2298982
Watve, A., Sural, S.: Soccer video processing for the detection of advertisement billboards. Pattern Recogn. Lett. 29(7), 994–1006 (2008). https://doi.org/10.1016/j.patrec.2008.01.022
Zhou, J., McGuinness, K., O’Connor, N.E.: A text recognition and retrieval system for e-business image management. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 23–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_3
Zhou, X., et al.: East: an efficient and accurate scene text detector. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2651, July 2017. https://doi.org/10.1109/CVPR.2017.283
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Samarin, A. et al. (2023). The Complete Study of the Movement Strategies of Trained Agents for Visual Descriptors of Advertising Signs. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_45
Download citation
DOI: https://doi.org/10.1007/978-3-031-37742-6_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-37741-9
Online ISBN: 978-3-031-37742-6
eBook Packages: Computer ScienceComputer Science (R0)