Skip to main content

The Complete Study of the Movement Strategies of Trained Agents for Visual Descriptors of Advertising Signs

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13644))

Included in the following conference series:

  • 504 Accesses

Abstract

We provide a complete description of our investigation into specialized visual descriptors application as a part of combined classifier architecture for advertising signboards photographs classification problem. We propose novel types of descriptors (pure convolutional neural networks based and based on trainable parametrized agent movement strategies) showing the state of the art results in the extraction of visual characteristics and related semantics of text fonts presented on a sign. To provide comparisons of developed approaches and its effectiveness examination we used two datasets of commercial building facade photographs grouped by the type of presented business.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/madrugado/signboard-classification-dataset.

References

  1. Ballan, L., Bertini, M., Bimbo, A.D., Jain, A.: Automatic trademark detection and recognition in sport videos. In: 2008 IEEE International Conference on Multimedia and Expo, pp. 901–904, June 2008. https://doi.org/10.1109/ICME.2008.4607581

  2. Chacra, D.A., Zelek, J.: Road segmentation in street view images using texture information. In: 2016 13th Conference on Computer and Robot Vision (CRV), pp. 424–431, June 2016. https://doi.org/10.1109/CRV.2016.47

  3. Chattopadhyay, T., Sinha, A.: Recognition of trademarks from sports videos for channel hyperlinking in consumer end. In: 2009 IEEE 13th International Symposium on Consumer Electronics, pp. 943–947, May 2009. https://doi.org/10.1109/ISCE.2009.5156881

  4. Clavelli, A., Karatzas, D.: Text segmentation in colour posters from the Spanish civil war era. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 181–185, July 2009. https://doi.org/10.1109/ICDAR.2009.32

  5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, June 2009. https://doi.org/10.1109/CVPR.2009.5206848

  6. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  9. Intasuwan, T., Kaewthong, J., Vittayakorn, S.: Text and object detection on billboards. In: 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 6–11, July 2018. https://doi.org/10.1109/ICITEED.2018.8534879

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Liu, T., Fang, S., Zhao, Y., Wang, P., Zhang, J.: Implementation of training convolutional neural networks. CoRR abs/1506.01195 (2015)

    Google Scholar 

  12. Malykh, V., Samarin, A.: Combined advertising sign classifier. In: van der Aalst, W.M.P., et al. (eds.) AIST 2019. LNCS, vol. 11832, pp. 179–185. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37334-4_16

    Chapter  Google Scholar 

  13. Romberg, S., Pueyo, L.G., Lienhart, R., van Zwol, R.: Scalable logo recognition in real-world images. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR 2011, pp. 25:1–25:8. ACM, New York, NY, USA (2011). http://doi.acm.org/10.1145/1991996.1992021. http://www.multimedia-computing.de/flickrlogos/

  14. Samarin, A., Malykh, V.: Worm-like image descriptor for signboard classification. In: Proceedings of The Fifth Conference on Software Engineering and Information Management (SEIM-2020) (2020)

    Google Scholar 

  15. Samarin, A., Malykh, V.: Ensemble-based commercial buildings facades photographs classifier. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020. LNCS, vol. 12602, pp. 257–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72610-2_19

    Chapter  Google Scholar 

  16. Samarin, A., Malykh, V., Muravyov, S.: Specialized image descriptors for signboard photographs classification. In: Robal, T., Haav, H.-M., Penjam, J., Matulevičius, R. (eds.) DB &IS 2020. CCIS, vol. 1243, pp. 122–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57672-1_10

    Chapter  Google Scholar 

  17. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  19. Smith, R.: An overview of the tesseract OCR engine. In: Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2, pp. 629–633, September 2007. https://doi.org/10.1109/ICDAR.2007.4376991

  20. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015. https://doi.org/10.1109/CVPR.2015.7298594

  21. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  22. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  23. Tian, Z., Huang, W., He, T., He, P., Qiao, Yu.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4

    Chapter  Google Scholar 

  24. Tsai, T., Cheng, W., You, C., Hu, M., Tsui, A.W., Chi, H.: Learning and recognition of on-premise signs from weakly labeled street view images. IEEE Trans. Image Process. 23(3), 1047–1059 (2014). https://doi.org/10.1109/TIP.2014.2298982

    Article  MathSciNet  MATH  Google Scholar 

  25. Watve, A., Sural, S.: Soccer video processing for the detection of advertisement billboards. Pattern Recogn. Lett. 29(7), 994–1006 (2008). https://doi.org/10.1016/j.patrec.2008.01.022

  26. Zhou, J., McGuinness, K., O’Connor, N.E.: A text recognition and retrieval system for e-business image management. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 23–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_3

    Chapter  Google Scholar 

  27. Zhou, X., et al.: East: an efficient and accurate scene text detector. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2651, July 2017. https://doi.org/10.1109/CVPR.2017.283

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Motyko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samarin, A. et al. (2023). The Complete Study of the Movement Strategies of Trained Agents for Visual Descriptors of Advertising Signs. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics