Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13644))

Included in the following conference series:

  • 550 Accesses

Abstract

Many approaches for fault detection in industrial processes has been presented in the literature, with approaches spanning from traditional univariate statistics to complex models able to encode the multivariate nature of time-series data. Although the vast corpus of works on this topic, there is no public benchmark shared among the community that can serve as a testbench for these methods, allowing researchers to evaluate their proposed approach with other state of the art approaches. In this paper we present the Industrial Robot Anomaly Detection (IndRAD) dataset as a benchmark for evaluating fault detection algorithms on industrial robots. The dataset is composed by 13 nominal trajectories and 3 trajectories with structural anomalies. We also propose a protocol to inject sensory anomalies in clean data. The dataset, code to reproduce these experiments and a leaderboard table to be used for future research are available at https://github.com/franzsetti/IndRAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary Rev, Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  2. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lect. IE 2(1), 1–18 (2015)

    Google Scholar 

  3. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  4. Harrou, F., Sun, Y., Hering, A.S., Madakyaru, M., Dairi, A.: Statistical process monitoring using advanced data-driven and deep learning approaches: theory and practical applications. Elsevier (2020)

    Google Scholar 

  5. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  7. Hornung, R., Urbanek, H., Klodmann, J., Osendorfer, C., Van Der Smagt, P.: Model-free robot anomaly detection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE (2014). https://doi.org/10.1109/IROS.2014.6943078

  8. Jaber, A.A., Bicker, R.: Industrial robot fault detection based on statistical control chart. Am. J. Eng. Appl. Sci. 9, 251–263 (2016)

    Article  Google Scholar 

  9. Jardine, A.K., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20(7), 1483–1510 (2006)

    Article  Google Scholar 

  10. Khalastchi, E., Kalech, M., Kaminka, G.A., Lin, R.: Online data-driven anomaly detection in autonomous robots. Knowl. Inf. Syst. 43(3), 657–688 (2014). https://doi.org/10.1007/s10115-014-0754-y

    Article  Google Scholar 

  11. Muradore, R., Fiorini, P.: A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Trans. Industr. Electron. 59(8), 3167–3175 (2011). https://doi.org/10.1109/TIE.2011.2167110

    Article  Google Scholar 

  12. Pereira, J., Silveira, M.: Unsupervised anomaly detection in energy time series data using variational recurrent autoencoders with attention. In: IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE (2018)

    Google Scholar 

  13. Sathish, V., Ramaswamy, S., Butail, S.: Training data selection criteria for detecting failures in industrial robots. IFAC-PapersOnLine 49(1), 385–390 (2016). https://doi.org/10.1016/j.ifacol.2016.03.084

    Article  Google Scholar 

  14. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  15. Sölch, M., Bayer, J., Ludersdorfer, M., van der Smagt, P.: Variational inference for on-line anomaly detection in high-dimensional time series. arXiv preprint arXiv:1602.07109 (2016)

  16. Vallachira, S., Orkisz, M., Norrlöf, M., Butail, S.: Data-driven gearbox failure detection in industrial robots. IEEE Trans. Industr. Inf. 16(1), 193–201 (2019)

    Article  Google Scholar 

  17. Wise, B.M., Ricker, N., Veltkamp, D., Kowalski, B.R.: A theoretical basis for the use of principal component models for monitoring multivariate processes. Process Control Qual. 1(1), 41–51 (1990)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Italian MIUR through the project “Dipartimenti di Eccellenza 2018-2022”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Setti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiorini, E., Tonin, D., Setti, F. (2023). IndRAD: A Benchmark for Anomaly Detection on Industrial Robots. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics