Skip to main content

Localization and Navigation of ROS-Based Autonomous Robot in Hospital Environment

  • Conference paper
  • First Online:
Business Intelligence (CBI 2023)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 484 ))

Included in the following conference series:

  • 423 Accesses

Abstract

This work is part of a research project during the COVID-19 pandemic that aims to design and develop a mobile autonomous robot for hospitals. In practice, implementing a navigation program directly on a physical robot is both expensive and hazardous. The solution is to perform a simulation using ROS (Robot Operating System), which offers several advantages that make it an appealing option for testing and development. In an unknown hospital environment, this paper presents a simulation of the navigation process of the autonomous robot Turtlebot3 by employing the Simultaneous Localization and Mapping (SLAM) algorithm, specifically the GMapping method, utilizing the distributed software framework of ROS. In a known hospital environment, we utilize trajectory planning algorithms designed for deterministic models. However, considering the inherent uncertainty in the environment and the inevitable inaccuracies of the models, we integrate the Markov decision process (MDP) by applying the classical Q-Learning algorithm. Through these simulations, our aim is to test and refine the navigation algorithms to enhance the performance of our mobile robot. Ultimately, the proposed simulation approach contributes to the development of robotic solutions that can assist in performing various routine tasks remotely. This saves time for healthcare personnel and, most importantly, ensures their safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drexler, N., Lapré, V.B.: For better or for worse: shaping the hospitality industry through robotics and artificial intelligence. Res. Hosp. Manage. 9(2), 117–120 (2019)

    Google Scholar 

  2. Santosuosso, A., Bottalico, B.: Autonomous systems and the law: why intelligence matters. In: Robotics, Autonomics, and the Law, pp. 27–58. Nomos Verlagsgesellschaft mbH & Co. KG (2017)

    Google Scholar 

  3. Sadeghi Esfahlani, S., Sanaei, A., Ghorabian, M., Shirvani, H.: The deep convolutional neural network role in the autonomous navigation of mobile robots (SROBO). Remote Sens. 14(14), 3324 (2022)

    Article  Google Scholar 

  4. Vacariu, P.P.: Pirate robot autonomous navigation through complex pipe networks using reinforcement learning (2021)

    Google Scholar 

  5. Noori, F.M., Portugal, D., Rocha, R.P., Couceiro, M.S.: On 3D simulators for multi-robot systems in ROS: MORSE or Gazebo? In: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), pp. 19–24. IEEE (2017)

    Google Scholar 

  6. Doroodgar, B., Liu, Y., Nejat, G.: A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims. IEEE Trans. Cybern. 44(12), 2719–2732 (2014)

    Article  Google Scholar 

  7. Bogue, R.: Sensors for robotic perception. Part two: positional and environmental awareness. Ind. Rob. Int. J. 42(6), 502–507 (2015). https://doi.org/10.1108/IR-07-2015-0133

    Article  Google Scholar 

  8. Karalekas, G., Vologiannidis, S., Kalomiros, J.: Europa: a case study for teaching sensors, data acquisition and robotics via a ROS-based educational robot. Sensors 20(9), 2469 (2020)

    Article  Google Scholar 

  9. Chikurtev, D.: Mobile robot simulation and navigation in ROS and Gazebo. In: 2020 International Conference Automatics and Informatics (ICAI), pp. 1–6. IEEE (2020)

    Google Scholar 

  10. Pajaziti, A.: Slam–map building and navigation via ROS. Int. J. Intell. Syst. Appl. Eng. 2(4), 71–75 (2014)

    Article  Google Scholar 

  11. Zhang, H., Zhang, C., Yang, W., Chen, C.Y.: Localization and navigation using QR code for mobile robot in indoor environment. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2501–2506. IEEE (2015)

    Google Scholar 

  12. Post, M.A., Bianco, A., Yan, X.T.: Autonomous navigation with open software platform for field robots. In: Gusikhin, O., Madani, K. (eds.) ICINCO 2017. LNEE, vol. 495, pp. 425–450. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-11292-9_22

    Chapter  Google Scholar 

  13. Ferreira, N.F., Araujo, A., Couceiro, M.S., Portugal, D.: Intensive summer course in robotics–robotcraft. Appl. Comput. Informatics 16(1/2), 155–179 (2018)

    Article  Google Scholar 

  14. Govostes, R.Z., Littlefield, R.H., Jaffre, F., Kaeli, J.W.: Iterative software design for an autonomous underwater vehicle with novel propulsion capabilities and vision-based object tracking. In: OCEANS 2021: San Diego–Porto, pp. 1–4. IEEE (2021)

    Google Scholar 

  15. Quigley, M., Gerkey, B., Smart, W.D.: Programming robots with ROS: a practical introduction to the robot operating system. O’Reilly Media, Inc. (2015)

    Google Scholar 

  16. Hristozov, A.D., Matson, E.T., Gallagher, J.C., Rogers, M., Dietz, E.: Resilient architecture framework for robotic systems. In: 2022 International Conference Automatics and Informatics (ICAI), pp. 18–23 (2022)

    Google Scholar 

  17. Amsters, R., Slaets, P.: Turtlebot 3 as a robotics education platform. In: Merdan, M., Lepuschitz, W., Koppensteiner, G., Balogh, R., Obdržálek, D. (eds.) RiE 2019. AISC, vol. 1023, pp. 170–181. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26945-6_16

    Chapter  Google Scholar 

  18. Cousins, S.: Willow garage retrospective [ros topics]. IEEE Robot. Autom. Mag. 21(1), 16–20 (2015)

    Article  Google Scholar 

  19. Xu, R., Li, C.: A review of high-throughput field phenotyping systems: focusing on ground robots. Plant Phenomics (2022)

    Google Scholar 

  20. Serrano-Muñoz, A., Elguea-Aguinaco, Í., Chrysostomou, D., BØgh, S., Arana-Arexolaleiba, N.: A scalable and unified multi-control framework for KUKA LBR iiwa collaborative robots. In: 2023 IEEE/SICE International Symposium on System Integration (SII), pp. 1–5. IEEE (2023)

    Google Scholar 

  21. Kirgis, F.P., Katsos, P., Kohlmaier, M.: Collaborative robotics. Robotic Fabrication in Architecture, Art and Design 2016, 448–453 (2016)

    Article  Google Scholar 

  22. Chung, S.Y., Huang, H.P.: Slammot-sp: simultaneous slammot and scene prediction. Adv. Robot. 24(7), 979–1002 (2010)

    Article  Google Scholar 

  23. Ravankar, A., Ravankar, A.A., Hoshino, Y., Emaru, T., Kobayashi, Y.: On a hopping-points svd and hough transform-based line detection algorithm for robot localization and mapping. Int. J. Adv. Rob. Syst. 13(3), 98 (2016)

    Article  Google Scholar 

  24. Zou, D., Tan, P., Yu, W.: Collaborative visual SLAM for multiple agents: a brief survey. Virtual Reality & Intelligent Hardware 1(5), 461–482 (2019)

    Article  Google Scholar 

  25. Thale, S.P., Prabhu, M.M., Thakur, P.V., Kadam, P.: ROS based SLAM implementation for autonomous navigation using turtlebot. In: ITM Web of Conferences, vol. 32, p. 01011. EDP Sciences (2020)

    Google Scholar 

  26. Kumar, S.: Development of SLAM algorithm for a Pipe Inspection Serpentine Robot (Master’s thesis, University of Twente) (2019)

    Google Scholar 

  27. Looi, C.Z., Ng, D.W.K.: A study on the effect of parameters for ROS motion planner and navigation system for indoor robot. Int. J. Electr. Comput. Eng. Res. 1(1), 29–36 (2021)

    Article  Google Scholar 

  28. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient optimization techniques for efficient motion planning. In: 2009 IEEE International Conference on Robotics and Automation, pp. 489–494. IEEE (2009)

    Google Scholar 

  29. Zheng, K.: Ros navigation tuning guide. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 962, pp. 197–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75472-3_6

    Chapter  Google Scholar 

  30. Chou, C.C., Lian, F.L., Wang, C.C.: Characterizing indoor environment for robot navigation using velocity space approach with region analysis and look-ahead verification. IEEE Trans. Instrum. Meas. 60(2), 442–451 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

The Project COVID-19 (2020–2022) has been funded with the support from the National Center for Scientific and Technical Research (CNRST) and Ministry of Higher Education, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Ben Roummane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Roummane, H., Daoui, C. (2023). Localization and Navigation of ROS-Based Autonomous Robot in Hospital Environment. In: El Ayachi, R., Fakir, M., Baslam, M. (eds) Business Intelligence. CBI 2023. Lecture Notes in Business Information Processing, vol 484 . Springer, Cham. https://doi.org/10.1007/978-3-031-37872-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37872-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37871-3

  • Online ISBN: 978-3-031-37872-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics