Skip to main content

Three-Phase Hybrid Evolutionary Algorithm for the Bi-Objective Travelling Salesman Problem

  • Conference paper
  • First Online:
Business Intelligence (CBI 2023)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 484 ))

Included in the following conference series:

  • 329 Accesses

Abstract

In this research paper, we address the Bi-objective Traveling Salesman Problem (BTSP), which involves minimizing two conflicting objectives: travel time and monetary cost. To tackle this problem, we propose a novel three-Phase Hybrid Evolutionary Algorithm (3PHEA) that combines the Lin-Kernighan Heuristic, an enhanced Non-Dominated Sorting Genetic Algorithm, and a Pareto Variable Neighborhood Search. We conduct a comparative study comparing our approach with three existing methods specifically designed for solving BTSP. Our evaluation includes 14 instances of varying degrees of difficulty and different sizes. To assess the performance of the algorithms, we employ multi-objective performance indicators. The results of our study demonstrate that 3PHEA outperforms the existing approaches by a significant margin. It achieves coverage of up to 80% of the true Pareto fronts, indicating its superiority in solving the BTSP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, A., Ghune, N., Prakash, S., Ramteke, M.: Evolutionary algorithm hybridized with local search and intelligent seeding for solving MTSP. Expert Syst. Appl. 181, 115192 (2021)

    Article  Google Scholar 

  2. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006). http://www.tsp.gatech.edu/concorde

  3. Bergel, A., Bergel, A.: The traveling salesman problem. Agile Artificial Intelligence in Pharo: Implementing Neural Networks, Genetic Algorithms, and Neuroevolution, pp. 209–224 (2020)

    Google Scholar 

  4. Blank, J., Deb, K., Mostaghim, S.: Solving the bi-objective traveling thief problem with multi-objective evolutionary algorithms. In: Trautmann, H., et al. (eds.) Evolutionary Multi-Criterion Optimization, pp. 46–60 (2017)

    Google Scholar 

  5. Cai, X., Wang, K., Mei, Y., Li, Z., Zhao, J., Zhang, Q.: Decomposition-based Lin-Kernighan heuristic with neighborhood structure transfer for multi/many-objective traveling salesman problem. IEEE Transactions on Evolutionary Computation, pp. 1 (2022). https://doi.org/10.1109/TEVC.2022.3215174

  6. Cheikhrouhou, O., Khoufi, I.: A comprehensive survey on the multiple traveling salesman problem: applications, approaches and taxonomy. Comput. Sci. Rev. 40, 100369 (2021). https://doi.org/10.1016/j.cosrev.2021.100369

    Article  MathSciNet  MATH  Google Scholar 

  7. Dib, O., Moalic, L., Manier, M.A., Caminada, A.: An advanced GA-VNS combination for multicriteria route planning in public transit networks. Expert Syst. Appl. 72, 67–82 (2017). https://doi.org/10.1016/j.eswa.2016.12.009

    Article  MATH  Google Scholar 

  8. Dib, O.: Novel hybrid evolutionary algorithm for bi-objective optimization problems. Sci. Rep. 13(1), 4267 (2023). https://doi.org/10.1038/s41598-023-31123-8

    Article  Google Scholar 

  9. Dib, O., Caminada, A., Manier, M.A., Moalic, L.: A memetic algorithm for computing multicriteria shortest paths in stochastic multimodal networks. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 103–104 (2017)

    Google Scholar 

  10. Dib, O., Manier, M.A., Moalic, L., Caminada, A.: Combining VNS with genetic algorithm to solve the one-to-one routing issue in road networks. Comput. Oper. Res. 78, 420–430 (2017). https://doi.org/10.1016/j.cor.2015.11.010

    Article  MathSciNet  MATH  Google Scholar 

  11. Florios, K., Mavrotas, G.: Generation of the exact pareto set in MTSP and set covering problems. Appl. Math. Comput. 237, 1–19 (2014)

    MathSciNet  MATH  Google Scholar 

  12. George, T., Amudha, T.: Genetic algorithm based multi-objective optimization framework to solve traveling salesman problem. In: Sharma, H., Govindan, K., Poonia, R.C., Kumar, S., El-Medany, W.M. (eds.) Advances in Computing and Intelligent Systems. AIS, pp. 141–151. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0222-4_12

    Chapter  Google Scholar 

  13. Jin, Z., Dib, O., Luo, Y., Hu, B.: A non-dominated sorting memetic algorithm for the multi-objective travelling salesman problem. In: 2021 4th International Conference on Algorithms, Computing and Artificial Intelligence, pp. 1–6 (2021)

    Google Scholar 

  14. Khan, I., Maiti, M.K., Basuli, K.: MTSP: an ABC approach. Appl. Intell. 50(11), 3942–3960 (2020)

    Article  Google Scholar 

  15. Kumar, R.: A survey on memetic algorithm and machine learning approach to traveling salesman problem. Int. J. Emerg. Technol. 11(1), 500–503 (2020)

    Google Scholar 

  16. Lust, T., Teghem, J.: Two-phase pareto local search for the BTSP. J. Heuristics 16(3), 475–510 (2010)

    Article  MATH  Google Scholar 

  17. Mandal, A.K., Kumar Deva Sarma, P.: Novel applications of ant colony optimization with the traveling salesman problem in DNA sequence optimization. In: 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC), pp. 1–6 (2022). https://doi.org/10.1109/iSSSC56467.2022.10051206

  18. Michalak, K.: Evolutionary algorithm using random immigrants for the MTSP. Procedia Comput. Sci. 192, 1461–1470 (2021)

    Article  Google Scholar 

  19. Moraes, D.H., Sanches, D.S., da Silva Rocha, J., Garbelini, J.M.C., Castoldi, M.F.: A novel multi-objective evolutionary algorithm based on subpopulations for the BTSP. Soft Comput. 23(15), 6157–6168 (2019)

    Google Scholar 

  20. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference, pp. 1–11 (2015)

    Google Scholar 

  21. Zheng, J., He, K., Zhou, J., Jin, Y., Li, C.M.: Combining reinforcement learning with Lin-Kernighan-Helsgaun algorithm for the traveling salesman problem. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 12445–12452 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Dib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dib, O. (2023). Three-Phase Hybrid Evolutionary Algorithm for the Bi-Objective Travelling Salesman Problem. In: El Ayachi, R., Fakir, M., Baslam, M. (eds) Business Intelligence. CBI 2023. Lecture Notes in Business Information Processing, vol 484 . Springer, Cham. https://doi.org/10.1007/978-3-031-37872-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37872-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37871-3

  • Online ISBN: 978-3-031-37872-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics