Skip to main content

Plant Disease Classification Using VGG-19 Based Faster-RCNN

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2023)

Abstract

Early plant disease diagnosis can help farmers avoid spending money on costly crop pesticides and aid them to boost food production. Scientists have put a lot of effort to classify plant diseases, but it is difficult to quickly locate and identify different crop abnormalities due to the high degree of resemblance between the normal and damaged parts of plant leaves. Additionally, the procedure of detecting plant diseases has been made more challenging due to the extensive color, size, shape, and intensity variations in the background and foreground of the plant images. To address the existing difficulties, we have introduced an effective deep learning (DL) based system called Faster-RCNN o recognize and classify various types of plant diseases. The suggested method consists of 3 basic steps. In order to identify the area of interest in investigated samples, we first create annotations for them which are later used for Faster-RCNN training. The Faster-RCNN model employs the VGG-19 network to extract the relevant keypoints from the given images which are later passed to the regressor and classification units to identify and categorize the various crop diseases using the estimated features. We evaluated our method on a widely used standard plant sample repository called the PlantVillage database, and the findings show that our approach is reliable for classifying plant diseases under a variety of image-capturing scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruinsma, J.: The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050. In: Expert Meeting on How to Feed the World, vol. 2050, pp. 24–26 (2009)

    Google Scholar 

  2. Pantazi, X.E., Moshou, D., Tamouridou, A.A.: Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Comput. Electron. Agric. 156, 96–104 (2019)

    Article  Google Scholar 

  3. Wolfenson, K.D.M.: Coping with the food and agriculture challenge: smallholders’ agenda. Food Agriculture Organisation of the United Nations, Rome (2013)

    Google Scholar 

  4. Sankaran, S., Mishra, A., Ehsani, R., Davis, C.: A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 72(1), 1–13 (2010)

    Article  Google Scholar 

  5. Dinh, H.X., Singh, D., Periyannan, S., Park, R.F., Pourkheirandish, M.: Molecular genetics of leaf rust resistance in wheat and barley. Theor. Appl. Genet. 133(7), 2035–2050 (2020)

    Article  Google Scholar 

  6. Patil, S., Chandavale, A.: A survey on methods of plant disease detection. Int. J. Sci. Res. 4(2), 1392–1396 (2015)

    Google Scholar 

  7. Ferentinos, K.P.: Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018)

    Article  Google Scholar 

  8. Gebbers, R., Adamchuk, V.I.: Precision agriculture and food security. Science 327(5967), 828–831 (2010)

    Article  Google Scholar 

  9. Joachims, T.: Making large-scale SVM learning practical. Technical report (1998)

    Google Scholar 

  10. Rokach, L., Maimon, O.: Decision trees. In: Maimon, O., Rokach, L. (eds.) Data mining and knowledge discovery handbook, pp. 165–192. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_9

    Chapter  MATH  Google Scholar 

  11. Birgé, L., Massart, P.: Gaussian model selection. J. Eur. Math. Soc. 3(3), 203–268 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bello-Cerezo, R., Bianconi, F., Di Maria, F., Napoletano, P., Smeraldi, F.: Comparative evaluation of hand-crafted image descriptors vs. off-the-shelf CNN-based features for colour texture classification under ideal and realistic conditions. Appl. Sci. 9(4), 738 (2019)

    Article  Google Scholar 

  13. Roska, T., Chua, L.O.: The CNN universal machine: an analogic array computer. IEEE Trans. Circ. Syst. II: Analog Digit. Signal Process. 40(3), 163–173 (1993)

    MATH  Google Scholar 

  14. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)

  15. Salakhutdinov, R., Hinton, G.: Deep boltzmann machines. In: Artificial intelligence and statistics, pp. 448–455. PMLR (2009)

    Google Scholar 

  16. Gewali, U.B., Monteiro, S.T., Saber, E.: Machine learning based hyperspectral image analysis: a survey. arXiv preprint arXiv:1802.08701 (2018)

  17. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  18. Yuan, Z.-W., Zhang, J.: Feature extraction and image retrieval based on AlexNet. In: Eighth International Conference on Digital Image Processing (ICDIP 2016), vol. 10033, p. 100330E: International Society for Optics and Photonics (2016)

    Google Scholar 

  19. Vedaldi, A., Zisserman, A.: VGG convolutional neural networks practical. Dept. Eng. Sci. Univ. Oxford 2016, 66 (2016)

    Google Scholar 

  20. Thenmozhi, K., Srinivasulu Reddy, U.: Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 164, 104906 (2019)

    Google Scholar 

  21. Paul, A., Ghosh, S., Das, A.K., Goswami, S., Das Choudhury, S., Sen, S.: A review on agricultural advancement based on computer vision and machine learning. In: Mandal, J.K., Bhattacharya, D. (eds.) Emerging technology in modelling and graphics. AISC, vol. 937, pp. 567–581. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7403-6_50

    Chapter  Google Scholar 

  22. Le, V.N.T., Ahderom, S., Apopei, B., Alameh, K.: A novel method for detecting morphologically similar crops and weeds based on the combination of contour masks and filtered local binary pattern operators. GigaScience 9(3), giaa017 (2020)

    Google Scholar 

  23. Ahmad, W., Shah, S.M., Irtaza, A.: Plants disease phenotyping using quinary patterns as texture descriptor. KSII Trans. Internet Inf. Syst. 14(8), 3312–3327 (2020)

    Google Scholar 

  24. Sun, Y., Jiang, Z., Zhang, L., Dong, W., Rao, Y.: SLIC_SVM based leaf diseases saliency map extraction of tea plant. Comput. Electron. Agric. 157, 102–109 (2019)

    Article  Google Scholar 

  25. Ramesh, S., Hebbar, R., Niveditha, M., Pooja, R., Shashank, N., Vinod, P.V.: Plant disease detection using machine learning. In: 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C), pp. 41–45. IEEE (2018)

    Google Scholar 

  26. Kuricheti, G., Supriya, P.: Computer vision based turmeric leaf disease detection and classification: a step to smart agriculture. In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 545–549. IEEE (2019)

    Google Scholar 

  27. Kaur, N.: Plant leaf disease detection using ensemble classification and feature extraction. Turk. J. Comput. Math. Educ. 12(11), 2339–2352 (2021)

    Google Scholar 

  28. Shrivastava, V.K., Pradhan, M.K.: Rice plant disease classification using color features: a machine learning paradigm. J. Plant Pathol. 103(1), 17–26 (2020). https://doi.org/10.1007/s42161-020-00683-3

    Article  Google Scholar 

  29. Walter, M.: Is this the end? Machine learning and 2 other threats to radiologys future, p. l3 (2016)

    Google Scholar 

  30. Argüeso, D., et al.: Few-Shot Learning approach for plant disease classification using images taken in the field. Comput. Electron. Agric. 175, 105542 (2020)

    Article  Google Scholar 

  31. Agarwal, M., Singh, A., Arjaria, S., Sinha, A., Gupta, S.: ToLeD: tomato leaf disease detection using convolution neural network. Procedia Comput. Sci. 167, 293–301 (2020)

    Article  Google Scholar 

  32. Richey, B., Majumder, S., Shirvaikar, M., Kehtarnavaz, N.: Real-time detection of maize crop disease via a deep learning-based smartphone app. In: Real-Time Image Processing and Deep Learning 2020, vol. 11401, p. 114010A. International Society for Optics and Photonics (2020)

    Google Scholar 

  33. Batool, A., Hyder, S.B., Rahim, A., Waheed, N., Asghar, M.D.: Classification and identification of tomato leaf disease using deep neural network. In: 2020 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–6. IEEE (2020)

    Google Scholar 

  34. Karthik, R., Hariharan, M., Anand, S., Mathikshara, P., Johnson, A., Menaka, R.: Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 86, 105933 (2020)

    Google Scholar 

  35. Dwivedi, R., Dey, S., Chakraborty, C., Tiwari, S.: Grape disease detection network based on multi-task learning and attention features. IEEE Sens. J. (2021)

    Google Scholar 

  36. Akshai, K.P., Anitha, J.: Plant disease classification using deep learning. In: 2021 3rd International Conference on Signal Processing and Communication (ICPSC), pp. 407–411. IEEE (2021)

    Google Scholar 

  37. Nawaz, M., et al.: A robust deep learning approach for tomato plant leaf disease localization and classification. Sci. Rep. 12(1), 18568 (2022)

    Article  Google Scholar 

  38. Albahli, S., Nawaz, M.: DCNet: DenseNet-77-based CornerNet model for the tomato plant leaf disease detection and classification. Front. Plant Sci. 13, 957961 (2022)

    Article  Google Scholar 

  39. Uijlings, J.R.R., Van De Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. Int. J. Comput. Vision 104(2), 154–171 (2013)

    Article  Google Scholar 

  40. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)

    Article  Google Scholar 

  41. Hughes, D., Salathé, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 (2015)

  42. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  43. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  44. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  45. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  46. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front. Plant Sci. 7, 1419 (2016)

    Article  Google Scholar 

  47. Geetharamani, G., Pandian, A.: Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Comput. Electr. Eng. 76, 323–338 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Attique Khan or Seifedine Kadry .

Editor information

Editors and Affiliations

Ethics declarations

All authors declared no conflict of interest in this work.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nawaz, M., Nazir, T., Khan, M.A., Rajinikanth, V., Kadry, S. (2023). Plant Disease Classification Using VGG-19 Based Faster-RCNN. In: Singh, M., Tyagi, V., Gupta, P., Flusser, J., Ören, T. (eds) Advances in Computing and Data Sciences. ICACDS 2023. Communications in Computer and Information Science, vol 1848. Springer, Cham. https://doi.org/10.1007/978-3-031-37940-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37940-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37939-0

  • Online ISBN: 978-3-031-37940-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics