Skip to main content

The Impact of Schizophrenia Misdiagnosis Rates on Machine Learning Models Performance

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 17th International Conference (PACBB 2023) (PACBB 2023)

Abstract

Schizophrenia is a complex disease with severely disabling symptoms. A consistent leading causal gene for the disease onset has not been found. There is also a lack of consensus on the disease etiology and diagnosis. Sweden poses a paradigmatic case, where relatively high misdiagnosis rates (19%) have been reported.

A large-scale case-control dataset based on the Swedish population was reduced to its most representative variants and the distinction between cases and controls was further scrutinized through gene-annotation based Machine Learning (ML) models.

The intra-group differences on cases and controls were accentuated by training the model on the entire dataset. The cases and controls with a higher likelihood to be misclassified, and hence more likely to be misdiagnosed were excluded from subsequent analysis. The model was then conventionally trained on the reduced dataset and the performances were compared.

The results indicate that the reported prevalence and misdiagnosis rates for Schizophrenia may be transposed to case-control cohorts, hence, reducing the performance of eventual association studies based on such datasets. After the sample filtering procedure, a simple Machine Learning model reached a performance more concurrent with the Schizophrenia heritability estimates on the literature.

Sample selection on large-scale datasets sequenced for Association Studies may enable the adaptation of ML approaches and strategies to complex studies research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayano, G., Demelash, S., yohannes, Z., et al.: Misdiagnosis, detection rate, and associated factors of severe psychiatric disorders in specialized psychiatry centers in Ethiopia. Ann. General Psychiatr.y 20 (2021). https://doi.org/10.1186/s12991-021-00333-7

  2. Bergsholm, P.: Is schizophrenia disappearing? The rise and fall of the diagnosis of functional psychoses: an essay. BMC Psychiatry 16 (2016). https://doi.org/10.1186/s12888-016-1101-5

  3. Cardno, A.G., Owen, M.J.: Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr. Bull. 40, 504–515 (2014). https://doi.org/10.1093/schbul/sbu016

    Article  Google Scholar 

  4. Carvalho, A.F., Solmi, M., Sanches, M., et al.: Evidence-based umbrella review of 162 peripheral biomarkers for major mental disorders. Transl. Psychiatry 10 (2020). https://doi.org/10.1038/s41398-020-0835-5

  5. Charlson, F.J., Ferrari, A.J., Santomauro, D.F., et al.: Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016. Schizophr. Bull. 44, 1195–1203 (2018). https://doi.org/10.1093/schbul/sby058

    Article  Google Scholar 

  6. Coulter, C., Baker, K.K., Margolis, R.L.: Specialized consultation for suspected recent-onset schizophrenia: diagnostic clarity and the distorting impact of anxiety and reported auditory hallucinations. J. Psychiatr. Pract. 25, 76–81 (2019). https://doi.org/10.1097/PRA.0000000000000363

    Article  Google Scholar 

  7. Dalman, C., Broms, J., Cullberg, J., Allebeck, P.: Young cases of schizophrenia identified in a national inpatient register - are the diagnoses valid? Soc. Psychiatry Psychiatr. Epidemiol. 37, 527–531 (2002). https://doi.org/10.1007/s00127-002-0582-3

    Article  Google Scholar 

  8. Edwards, G.G., Uy-Evanado, A., Stecker, E.C., et al.: Sudden cardiac arrest in patients with schizophrenia: a population-based study of resuscitation outcomes and pre-existing cardiovascular disease. IJC Heart Vasculature 40 (2022). https://doi.org/10.1016/j.ijcha.2022.101027

  9. Ekholm, B., Ekholm, A., Adolfsson, R., et al.: Evaluation of diagnostic procedures in Swedish patients with schizophrenia and related psychoses. Nord. J. Psychiatry 59, 457–464 (2005). https://doi.org/10.1080/08039480500360906

    Article  Google Scholar 

  10. Ganna, A., Genovese, G., Howrigan, D.P., et al.: Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nat. Neurosci. 19, 1563–1565 (2016). https://doi.org/10.1038/nn.4404

    Article  Google Scholar 

  11. Gejman, P.V., Sanders, A.R., Duan, J.: The role of genetics in the etiology of schizophrenia. Psychiatr. Clin. North Am. 33, 35–66 (2010). https://doi.org/10.1016/j.psc.2009.12.003

    Article  Google Scholar 

  12. Genovese, G., Fromer, M., Stahl, E.A., et al.: Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016). https://doi.org/10.1038/nn.4402

    Article  Google Scholar 

  13. Hilker, R., Helenius, D., Fagerlund, B., et al.: Heritability of schizophrenia and schizophrenia spectrum based on the nationwide Danish twin register. Biol. Psychiat. 83, 492–498 (2018). https://doi.org/10.1016/j.biopsych.2017.08.017

    Article  Google Scholar 

  14. van Hilten, A., Kushner, S.A., Kayser, M., et al.: Gennet framework: interpretable deep learning for predicting phenotypes from genetic data. Commun. Biol. 4 (2021). https://doi.org/10.1038/s42003-021-02622-z

  15. Honer, W.G., Smith, G.N., MacEwan, G.W., et al.: Diagnostic reassessment and treatment response in schizophrenia. J. Clin. Psychiatry 55 (1994)

    Google Scholar 

  16. Hu, W., Macdonald, M.L., Elswick, D.E., Sweet, R.A.: The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann. N. Y. Acad. Sci. 1338, 38–57 (2015). https://doi.org/10.1111/nyas.12547

    Article  Google Scholar 

  17. Johns Hopkins University (Baltimore, M.M.N.I.o.G.M.: Online mendelian inheritance in man, omim (2023). https://omim.org/

  18. Kahn, R.S., Sommer, I.E., Murray, R.M., et al.: Schizophrenia. Nat. Rev. Disease Primers 1 (2015). https://doi.org/10.1038/nrdp.2015.67

  19. Kanehisa, M., Goto, S.: Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000). https://doi.org/10.1093/nar/28.1.27

    Article  Google Scholar 

  20. Kondej, M., Stępnicki, P. Kaczor, A.A.: Multi-target approach for drug discovery against schizophrenia. Int. J. Mol. Sci. 19 (2018). https://doi.org/10.3390/ijms19103105

  21. Kristjansson, E., Allebeck, P., Wistedt, B.: Validity of the diagnosis schizophrenia in a psychiatric inpatient register: a retrospective application of DSM-III criteria on ICD-8 diagnoses in Stockholm county. Nord. J. Psychiatry 41, 229–234 (1987). https://doi.org/10.3109/08039488709103182

    Article  Google Scholar 

  22. Liao, Y., Wang, J., Jaehnig, E.J., et al.: Webgestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019). https://doi.org/10.1093/nar/gkz401

    Article  Google Scholar 

  23. Ludvigsson, J.F., Andersson, E., Ekbom, A., et al.: External review and validation of the swedish national inpatient register. BMC Publ. Health 11 (2011). https://doi.org/10.1186/1471-2458-11-450

  24. Lugnegård, T., Hallerbäck, M.U.: Schizophrenia (2022). https://www.gu.se/en/gnc/schizophrenia

  25. McGrath, J., Saha, S., Chant, D., Welham, J.: Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76 (2008). https://doi.org/10.1093/epirev/mxn001

    Article  Google Scholar 

  26. Mi, H., Muruganujan, A., Casagrande, J.T., Thomas, P.D.: Large-scale gene function analysis with the panther classification system. Nat. Protoc. 8, 1551–1566 (2013). https://doi.org/10.1038/nprot.2013.092

    Article  Google Scholar 

  27. Nemeroff, C.B., Weinberger, D., Rutter, M., et al.: DSM-5: a collection of psychiatrist views on the changes, controversies, and future directions. BMC Med. 11 (2013). https://doi.org/10.1186/1741-7015-11-202

  28. Olfson, M., Gerhard, T., Huang, C., et al.: Premature mortality among adults with schizophrenia in the united states. JAMA Psychiat. 72, 1172–1181 (2015). https://doi.org/10.1001/jamapsychiatry.2015.1737

    Article  Google Scholar 

  29. Organization, W.H.: Schizophrenia (2022). https://www.who.int/news-room/fact-sheets/detail/schizophrenia

  30. Pantazopoulos, H., Katsel, P., Haroutunian, V., et al.: Molecular signature of extracellular matrix pathology in schizophrenia. Eur. J. Neurosci. 53, 3960–3987 (2021). https://doi.org/10.1111/ejn.15009

    Article  Google Scholar 

  31. Pillinger, T., Osimo, E.F., de Marvao, A., et al.: Cardiac structure and function in patients with schizophrenia taking antipsychotic drugs: an MRI study. Transl. Psychiatry 9 (2019). https://doi.org/10.1038/s41398-019-0502-x

  32. Purcell, S.M., Moran, J.L., Fromer, M., et al.: A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185–190 (2014). https://doi.org/10.1038/nature12975

    Article  Google Scholar 

  33. Ripke, S., O’Dushlaine, C., Chambert, K., et al.: Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013). https://doi.org/10.1038/ng.2742

    Article  Google Scholar 

  34. Saha, S., Chant, D.C., Welham, J.L., McGrath, J.J.: The incidence and prevalence of schizophrenia varies with latitude. Acta Psychiatr. Scand. 114, 36–39 (2006). https://doi.org/10.1111/j.1600-0447.2005.00742.x

    Article  Google Scholar 

  35. Schmidt, M.J. Mirnics, K.: Neurodevelopment, Gaba system dysfunction, and schizophrenia (2015). https://doi.org/10.1038/npp.2014.95

  36. Thomas, P.D., Ebert, D., Muruganujan, A., et al.: Panther: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022). https://doi.org/10.1002/pro.4218

    Article  Google Scholar 

Download references

Acknowledgements

The datasets used for the analysis described in this manuscript were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000473.v2.p2. Samples used for data analysis were provided by the Swedish Cohort Collection supported by the NIMH grant R01MH077139, the Sylvan C. Herman Foundation, the Stanley Medical Research Institute and The Swedish Research Council (grants 2009-4959 and 2011-4659). Support for the exome sequencing was provided by the NIMH Grand Opportunity grant RCMH089905, the Sylvan C. Herman Foundation, a grant from the Stanley Medical Research Institute and multiple gifts to the Stanley Center for Psychiatric Research at the Broad Institute of MIT and Harvard. This work is funded by the FCT - Foundation for Science and Technology, I.P./MCTES through national funds (PIDDAC), within the scope of CISUC R&D Unit - UIDB/00326/2020 and the PhD Scholarship SFRH/BD/146094/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martins, D., Egas, C., Arrais, J.P. (2023). The Impact of Schizophrenia Misdiagnosis Rates on Machine Learning Models Performance. In: Rocha, M., Fdez-Riverola, F., Mohamad, M.S., Gil-González, A.B. (eds) Practical Applications of Computational Biology and Bioinformatics, 17th International Conference (PACBB 2023). PACBB 2023. Lecture Notes in Networks and Systems, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-031-38079-2_1

Download citation

Publish with us

Policies and ethics