Skip to main content

Deep Learning and Transformers in MHC-Peptide Binding and Presentation Towards Personalized Vaccines in Cancer Immunology: A Brief Review

  • Conference paper
  • First Online:
Practical Applications of Computational Biology and Bioinformatics, 17th International Conference (PACBB 2023) (PACBB 2023)

Abstract

Cancer immunology is a new alternative to traditional cancer treatments like radiotherapy and chemotherapy. There are some strategies, but neoantigen detection for developing cancer vaccines are methods with a high impact in recent years. However, neoantigen detection depends on the correct prediction of peptide-MHC binding. Furthermore, transformers are considered a revolution in artificial intelligence with a high impact on NLP tasks. Since amino acids and proteins could be considered like words and sentences, the peptide-MHC binding prediction problem could be seen as a NLP task. Therefore, in this work, we performed a systematic literature review of deep learning and transformer methods used in peptide-MHC binding and presentation prediction. We analyzed how ANNs, CNNs, RNNs, and Transformer are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, M., et al.: Neoantigen vaccine: an emerging tumor immunotherapy. Mol. Cancer 18(1), 1–14 (2019)

    Article  Google Scholar 

  2. Borden, E.S., Buetow, K.H., Wilson, M.A., Hastings, K.T.: Cancer neoantigens: challenges and future directions for prediction, prioritization, and validation. Front. Oncol. 12 (2022)

    Google Scholar 

  3. Chen, I., Chen, M., Goedegebuure, P., Gillanders, W.: Challenges targeting cancer neoantigens in 2021: a systematic literature review. Expert Rev. Vaccines 20(7), 827–837 (2021)

    Article  Google Scholar 

  4. Gopanenko, A.V., Kosobokova, E.N., Kosorukov, V.S.: Main strategies for the identification of neoantigens. Cancers 12(10), 2879 (2020)

    Article  Google Scholar 

  5. Mattos, L., et al.: Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the Esmo precision medicine working group. Ann. Oncol. 31(8), 978–990 (2020)

    Article  MathSciNet  Google Scholar 

  6. Abelin, J.G., et al.: Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46(2), 315–326 (2017)

    Article  Google Scholar 

  7. Mei, S., et al.: A comprehensive review and performance evaluation of bioinformatics tools for HLA class i peptide-binding prediction. Brief. Bioinform. 21(4), 1119–1135 (2020)

    Article  Google Scholar 

  8. Nielsen, M., Andreatta, M., Peters, B., Buus, S.: Immunoinformatics: predicting peptide–MHC binding. Annu. Rev. Biomedical Data Sci. 3, 191–215 (2020)

    Google Scholar 

  9. Jin, J., et al.: Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism. Proteins: Struct. Funct. Bioinform. 89(7), 866–883 (2021)

    Google Scholar 

  10. Ye, Y., et al.: Mathla: a robust framework for HLA-peptide binding prediction integrating bidirectional LSTM and multiple head attention mechanism. BMC Bioinform. 22(1), 1–12 (2021)

    Article  MathSciNet  Google Scholar 

  11. Zhao, T., Cheng, L., Zang, T., Hu, Y.: Peptide-major histocompatibility complex class i binding prediction based on deep learning with novel feature. Front. Genet. 10, 1191 (2019)

    Article  Google Scholar 

  12. O’Donnell, T.J., Rubinsteyn, A., Bonsack, M., Riemer, A.B., Laserson, U., Hammerbacher, J.: Mhcflurry: open-source class i MHC binding affinity prediction. Cell Syst. 7(1), 129–132 (2018)

    Article  Google Scholar 

  13. Yang, X., Zhao, L., Wei, F., Li, J.: DeepnetBIM: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information. BMC Bioinform. 22(1), 1–16 (2021)

    Article  Google Scholar 

  14. Hu, Y., et al.: ACME: pan-specific peptide-MHC class i binding prediction through attention-based deep neural networks. Bioinformatics 35(23), 4946–4954 (2019)

    Article  Google Scholar 

  15. Liu, Z., et al.: Deepseqpanii: an interpretable recurrent neural network model with attention mechanism for peptide-HLA class ii binding prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. (2021)

    Google Scholar 

  16. Jokinen, E., Huuhtanen, J., Mustjoki, S., Heinonen, M., Lähdesmäki, H.: Predicting recognition between t cell receptors and epitopes with TCRGP. PLoS Comput. Biol.‘ 17(3), e1008814 (2021)

    Article  Google Scholar 

  17. Zeng, H., Gifford, D.K.: Quantification of uncertainty in peptide-MHC binding prediction improves high-affinity peptide selection for therapeutic design. Cell Syst. 9(2), 159–166 (2019)

    Article  Google Scholar 

  18. Zeng, H., Gifford, D.K.: Deepligand: accurate prediction of MHC class i ligands using peptide embedding. Bioinformatics 35(14), i278–i283 (2019)

    Article  Google Scholar 

  19. Kubick, N., Mickael, M.E.: Predicting epitopes based on TCR sequence using an embedding deep neural network artificial intelligence approach. bioRxiv (2021)

    Google Scholar 

  20. Kawashima, S., Kanehisa, M.: Aaindex: amino acid index database. Nucleic Acids Res. 28(1), 374–374 (2000)

    Article  Google Scholar 

  21. Li, G., Iyer, B., Prasath, V.S., Ni, Y., Salomonis, N.: Deepimmuno: deep learning-empowered prediction and generation of immunogenic peptides for t-cell immunity. Brief. Bioinform. 22(6), bbab160 (2021)

    Google Scholar 

  22. Shi, Y., et al.: Deepantigen: a novel method for neoantigen prioritization via 3d genome and deep sparse learning. Bioinformatics 36(19), 4894–4901 (2020)

    Article  Google Scholar 

  23. Moris, P., et al.: Current challenges for unseen-epitope TCR interaction prediction and a new perspective derived from image classification. Brief. Bioinform. 22(4), bbaa318 (2021)

    Google Scholar 

  24. Montemurro, A., et al.: Nettcr-2.0 enables accurate prediction of TCR-peptide binding by using paired TCR\(\alpha \) and \(\beta \) sequence data. Commun. Biology 4(1), 1–13 (2021)

    Article  MathSciNet  Google Scholar 

  25. Luu, A.M., Leistico, J.R., Miller, T., Kim, S., Song, J.S.: Predicting TCR-epitope binding specificity using deep metric learning and multimodal learning. Genes 12(4), 572 (2021)

    Article  Google Scholar 

  26. Zhou, L.Y., Zou, F., Sun, W.: Prioritizing candidate peptides for cancer vaccines through predicting peptide presentation by HLA-i proteins. Biometrics (2022)

    Google Scholar 

  27. Reynisson, B., Alvarez, B., Paul, S., Peters, B., Nielsen, M.: Netmhcpan-4.1 and netmhciipan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48(W1), W449–W454 (2020)

    Article  Google Scholar 

  28. Reynisson, B., Barra, C., Kaabinejadian, S., Hildebrand, W.H., Peters, B., Nielsen, M.: Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J. Proteome Res. 19(6), 2304–2315 (2020)

    Article  Google Scholar 

  29. O’Donnell, T.J., Rubinsteyn, A., Laserson, U.: Mhcflurry 2.0: improved pan-allele prediction of MHC class i-presented peptides by incorporating antigen processing. Cell Syst. 11(1), 42–48 (2020)

    Article  Google Scholar 

  30. Alvarez, B., et al.: Nnalign_ma; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions. Mol. Cell. Proteom. 18(12), 2459–2477 (2019)

    Article  Google Scholar 

  31. Han, Y.: Deep convolutional neural networks for peptide-MHC binding predictions (2018)

    Google Scholar 

  32. Liu, Z., Cui, Y., Xiong, Z., Nasiri, A., Zhang, A., Hu, J.: Deepseqpan, a novel deep convolutional neural network model for pan-specific class i HLA-peptide binding affinity prediction. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  33. Lang, F., Riesgo-Ferreiro, P., Lower, M., Sahin, U., Schrors, B.: Neofox: annotating neoantigen candidates with neoantigen features. Bioinformatics 37(22), 4246–4247 (2021)

    Google Scholar 

  34. Lee, K.-H., Chang, Y.-C., Chen, T.-F., Juan, H.-F., Tsai, H.-K., Chen, C.-Y.: Connecting MHC-i-binding motifs with HLA alleles via deep learning. Commun. Biol. 4(1), 1–12 (2021)

    Article  Google Scholar 

  35. Pei, B., Hsu, Y.-H.: Iconmhc: a deep learning convolutional neural network model to predict peptide and MHC-i binding affinity. Immunogenetics 72(5), 295–304 (2020)

    Article  Google Scholar 

  36. You, R., Qu, W., Mamitsuka, H., Zhu, S.: Deepmhcii: a novel binding core-aware deep interaction model for accurate MHC-ii peptide binding affinity prediction. Bioinformatics 38(Supplement_1), i220–i228 (2022)

    Google Scholar 

  37. Ng, F.S., et al.: Minerva: learning the rules of HLA class i peptide presentation in tumors with convolutional neural networks and transfer learning. Available at SSRN 3704016 (2020)

    Google Scholar 

  38. Heng, Y., et al.: A simple pan-specific RNN model for predicting HLA-ii binding peptides. Mol. Immunol. 139, 177–183 (2021)

    Article  Google Scholar 

  39. Heng, Y., et al.: A pan-specific GRU-based recurrent neural network for predicting HLA-i-binding peptides. ACS Omega 5(29), 18321–18330 (2020)

    Article  Google Scholar 

  40. Wu, J., et al.: Deephlapan: a deep learning approach for neoantigen prediction considering both HLA-peptide binding and immunogenicity. Front. Immunol. 2559 (2019)

    Google Scholar 

  41. Shao, X.M., et al.: High-throughput prediction of MHC class i and ii neoantigens with MHCNUGGETSHIGH-throughput prediction of neoantigens with MHCNUGGETS. Cancer Immunol. Res. 8(3), 396–408 (2020)

    Article  Google Scholar 

  42. Vielhaben, J., Wenzel, M., Samek, W., Strodthoff, N.: USMPEP: universal sequence models for major histocompatibility complex binding affinity prediction. BMC Bioinform. 21(1), 1–16 (2020)

    Article  Google Scholar 

  43. Chen, B., et al.: Predicting HLA class ii antigen presentation through integrated deep learning. Nat. Biotechnol. 37(11), 1332–1343 (2019)

    Article  Google Scholar 

  44. Venkatesh, G., Grover, A., Srinivasaraghavan, G., Rao, S.: Mhcattnnet: predicting MHC-peptide bindings for MHC alleles classes i and ii using an attention-based deep neural model. Bioinformatics 36(Supplement_1), i399–i406 (2020)

    Google Scholar 

  45. Xie, X., Han, Y., Zhang, K.: Mhcherrypan: a novel pan-specific model for binding affinity prediction of class i HLA-peptide. Int. J. Data Min. Bioinform. 24(3), 201–219 (2020)

    Article  Google Scholar 

  46. Cheng, J., Bendjama, K., Rittner, K., Malone, B.: BERTMHC: improved MHC-peptide class ii interaction prediction with transformer and multiple instance learning. Bioinformatics 37(22), 4172–4179 (2021)

    Article  Google Scholar 

  47. Rao, R., et al.: Evaluating protein transfer learning with tape. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  48. Gasser, H.-C., Bedran, G., Ren, B., Goodlett, D., Alfaro, J., Rajan, A.: Interpreting BERT architecture predictions for peptide presentation by MHC class i proteins. arXiv preprint arXiv:2111.07137 (2021)

  49. Wang, F., et al.: MhcroBERTa: pan-specific peptide-MHC class i binding prediction through transfer learning with label-agnostic protein sequences. Brief. Bioinform. 23(3), bbab595 (2022)

    Google Scholar 

  50. Zhang, Y., et al.: HLAB: learning the BiLSTM features from the protBERT-encoded proteins for the class i HLA-peptide binding prediction. Brief. Bioinform. (2022)

    Google Scholar 

  51. Vita, R., et al.: The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 47(D1), D339–D343 (2018)

    Article  Google Scholar 

  52. Elnaggar, A., et al.: Prottrans: toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 7112–7127 (2021)

    Article  Google Scholar 

  53. Jing, Y., Zhang, S., Wang, H.: Dapnet-HLA: adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites. Anal. Biochem. 666, 115075 (2023)

    Article  Google Scholar 

  54. Chu, Y., et al.: A transformer-based model to predict peptide-HLA class i binding and optimize mutated peptides for vaccine design. Nat. Mach. Intell. 4(3), 300–311 (2022)

    Article  Google Scholar 

  55. Rives, A., et al.:Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci. 118(15) (2021)

    Google Scholar 

  56. Lin, Z., et al.: Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379(6637), 1123–1130 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Enrique Machaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Machaca, V.E., Goyzueta, V., Cruz, M., Tupac, Y. (2023). Deep Learning and Transformers in MHC-Peptide Binding and Presentation Towards Personalized Vaccines in Cancer Immunology: A Brief Review. In: Rocha, M., Fdez-Riverola, F., Mohamad, M.S., Gil-González, A.B. (eds) Practical Applications of Computational Biology and Bioinformatics, 17th International Conference (PACBB 2023). PACBB 2023. Lecture Notes in Networks and Systems, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-031-38079-2_2

Download citation

Publish with us

Policies and ethics