Skip to main content

Improved Cost-Metric for Nearest Neighbor Mapping of Quantum Circuits to 2-Dimensional Hexagonal Architecture

  • Conference paper
  • First Online:
Reversible Computation (RC 2023)

Abstract

Quantum computing offers substantial speedup over conventional computing in solving certain computationally hard problems. The emergence of quantum computers in recent years has motivated researchers to develop design automation tools to map quantum circuits to such platforms. One major challenge is to limit the noise or computational error during gate operations; in particular, errors are higher when gates operate on non-neighbor qubits. A common approach to tackle this problem is to make the circuits Nearest-Neighbor (NN) compliant by inserting either Swap gates or CNOT templates. Reduction of gate overhead also becomes important as it serves to limit the overall noise and error. In some recent works, mapping of quantum circuits to hexagonal qubit architecture have been investigated. Hexagonal layout of qubits offers extended neighborhood that helps to reduce the number of Swap or additional CNOT gates required for NN-compliance. Existing approaches incur high gate overheads that can be reduced by improved gate mapping strategies with better cost metrics. The present work proposes one such approach using a priority-based cost metric. The proposed cost-metric is general and can be applied to any architectures; however, in this work we show its benefit for hexagonal architecture. Experiments on benchmark circuits confirm that the proposed method reduces gate overhead by \(29\%\) over a very recent work based on greedy mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Swap gate can be realized using three back-to-back CNOT gates.

References

  1. Ahsan, M., Naqvi, S.A.Z., Anwer, H.: Quantum circuit engineering for correcting coherent noise. Phys. Rev. A 105, 022428 (2022). https://doi.org/10.1103/PhysRevA.105.022428

    Article  Google Scholar 

  2. de Almeida, A.A.A., Dueck, G.W., da Silva, A.C.R.: CNOT gate mappings to Clifford+T circuits in IBM architectures. In: International Symposium on Multiple-Valued Logic, pp. 7–12 (2019)

    Google Scholar 

  3. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  Google Scholar 

  4. Chang, K.Y., Lee, C.Y.: Mapping nearest neighbor compliant quantum circuits onto a 2-D hexagonal architecture. IEEE Trans. CAD Integr. Circuits Syst. 41(10), 1–14 (2021)

    Google Scholar 

  5. Chow, J., Dial, O., Gambetta, J.: IBM Quantum breaks the 100-qubit processor barrier. https://research.ibm.com/blog/127-qubit-quantum-processor-eagle/ (2021). Accessed 16 Nov 2021

  6. Datta, K., Kole, A., Sengupta, I., Drechsler, R.: Mapping quantum circuits to 2-dimensional quantum architectures. In: GI-Jahrestagung Workshop 2022, pp. 1109–1120 (2022)

    Google Scholar 

  7. Datta, K., Kole, A., Sengupta, I., Drechsler, R.: Nearest neighbor mapping of quantum circuits to two-dimensional hexagonal qubit architecture. In: International Symposium on Multiple-Valued Logic, pp. 35–42 (2022)

    Google Scholar 

  8. Delaney, R.D., Urmey, M.D., Mittal, S., et al.: Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606(7914), 489–493 (2022). https://doi.org/10.1038/s41586-022-04720-2

    Article  Google Scholar 

  9. Grover, L.: A fast quantum mechanical algorithm for database search. In: ACM Symposium on Theory of computing, pp. 212–219 (1996)

    Google Scholar 

  10. Hilder, J., Pijn, D., Onishchenko, O., et al.: Fault-tolerant parity readout on a shuttling-based trapped-ion quantum computer. Phys. Rev. X 12, 011032 (2022). https://doi.org/10.1103/PhysRevX.12.011032

    Article  Google Scholar 

  11. Kole, A., Hillmich, S., Datta, K., Wille, R., Sengupta, I.: Improved mapping of quantum circuits to IBM QX architectures. In: IEEE Trans. CAD Integr. Circuits Syst. 39(10), 2375–2383 (2020)

    Google Scholar 

  12. Litinski, D., Kesselring, M.S., Eisert, J., von Oppen, F.: Combining topological hardware and topological software: color-code quantum computing with topological superconductor networks. Phys. Rev. 7(3), 031048 (2017)

    Article  Google Scholar 

  13. Matsumoto, K., Amano, K.: Representation of quantum circuits with Clifford and \(\pi /8\) gates. arXiv preprint arXiv:0806.3834 (2008)

  14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  15. Niemann, P., Bandyopadhyay, C., Drechsler, R.: Combining SWAPs and remote Toffoli gates in the mapping to IBM QX architectures. In: Design Automation and Test in Europe, pp. 1–6 (2021)

    Google Scholar 

  16. Omkar, S., Lee, S.H., Teo, Y.S., Lee, S.W., Jeong, H.: All-photonic architecture for scalable quantum computing with Greenberger-Horne-Zeilinger states. PRX Quantum 3, 030309 (2022). https://doi.org/10.1103/PRXQuantum.3.030309

    Article  Google Scholar 

  17. Rahman, M., Dueck, G.W.: Synthesis of linear nearest neighbor quantum circuits. In: 10th Internationol Workshop on Boolean Problems, pp. 1–9 (2012)

    Google Scholar 

  18. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  19. Tang, H., et al.: Experimental quantum fast hitting on hexagonal graphs. Nat. Photonics 12(12), 754–758 (2018)

    Article  Google Scholar 

  20. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Proceedings International Symposium on Multiple-Valued Logic, pp. 220–225. Texas, USA (2008)

    Google Scholar 

  21. Zhou, X., Li, S., Feng, Y.: Quantum circuit transformation based on simulated annealing and heuristic search. Trans. Comput. Aided Design Integr. Circuits Syst. 39(12), 4683–4694 (2020). https://doi.org/10.1109/TCAD.2020.2969647

  22. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. CAD Integr. Circuits Syst. 38(7), 1226–1236 (2019). http://iic.jku.at/eda/res-earch/ibm_qx_mapping/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamalika Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, K., Kole, A., Sengupta, I., Drechsler, R. (2023). Improved Cost-Metric for Nearest Neighbor Mapping of Quantum Circuits to 2-Dimensional Hexagonal Architecture. In: Kutrib, M., Meyer, U. (eds) Reversible Computation. RC 2023. Lecture Notes in Computer Science, vol 13960. Springer, Cham. https://doi.org/10.1007/978-3-031-38100-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38100-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38099-0

  • Online ISBN: 978-3-031-38100-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics