Skip to main content

A q-Analogue of the Family of Poincaré Distributions on the Upper Half Plane

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14071))

Included in the following conference series:

Abstract

The authors suggested a family of Poincaré distributions on the upper half plane, which is essentially the same as a family of hyperboloid distributions on the two dimensional hyperbolic space. This family has an explicit form of normalizing constant and is \(SL(2,\mathbb {R})\)-invariant. In this paper, as a q-analogue of Poincaré distributions, we propose a q-exponential family on the upper half plane with an explicit form of normalizing constant and show that it is also \(SL(2,\mathbb {R})\)-invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S., Ohara, A.: Geometry of q-exponential family of probability distributions. Entropy 13, 1170–1185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbaresco, F., Gay-Balmaz, F.: Lie group cohomology and (multi)symplectic integrators: new geometric tools for Lie group machine learning based on Souriau Geometric statistical mechanics. Entropy 22(5), 498 (2022)

    Article  MathSciNet  Google Scholar 

  3. Barbaresco, F.: Symplectic theory of heat and information geometry. In: Handbook of Statistics, chap. 4, vol. 46, pp. 107–143. Elsevier (2022)

    Google Scholar 

  4. Barndorff-Nielsen, O.E.: Information and exponential families in statistical theory. Wiley Series in Probability and Statistics, John Wiley & Sons Ltd., Chichester (1978)

    MATH  Google Scholar 

  5. Barndorff-Nielsen, O.E.: Hyperbolic distributions and distribution on hyperbolae. Scand. J. Stat. 8, 151–157 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Barndorff-Nielsen, O.E., Blæsild, P., Eriksen, P.S.: Decomposition and invariance of measures, and statistical transformation models. Springer-Verlag Lecture Note in Statistics (1989)

    Google Scholar 

  7. Barndorff-Nielsen, O.E., Blæsild, P., Jensen, J.L., Jørgensen, B.: Exponential transformation models. Proc. Roy. Soc. Lond. Ser. A 379(1776), 41–65 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourbaki, N.: Integration (translated by Sterlin K. Beberian). Springer, Heidelberg (2004)

    Google Scholar 

  9. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  10. Jensen, J.L.: On the hyperboloid distribution. Scand. J. Statist. 8, 193–206 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Kiral, E.M., Möllenhoff, T., Khan, M.E.: The lie-group bayesian learning rule. In: Proceedings of 26th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 206. PMLR (2023)

    Google Scholar 

  12. Marle, C.-M.: On Gibbs states of mechanical systems with symmetries. J. Geom. Symm. Phys. 57, 45–85 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Matsuzoe, H., Ohara, A.: Geometry of q-exponential families. Recent Progress in Differential Geometry and its Related Fields (2011)

    Google Scholar 

  14. Tojo, K., Yoshino, T.: Harmonic exponential families on homogeneous spaces. Inf. Geo. 4, 215–243 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tojo, K., Yoshino, T.: An exponential family on the upper half plane and its conjugate prior. In: Barbaresco, F., Nielsen, F. (eds.) SPIGL 2020. SPMS, vol. 361, pp. 84–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77957-3_4

    Chapter  MATH  Google Scholar 

  16. Tojo, K., Yoshino, T.: A method to construct exponential families by representation theory. Inf. Geo. 5, 493–510 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsallis, C.: What are the numbers that experiments provide? Quimica Nova 17, 468–471 (1994)

    Google Scholar 

Download references

Acknowledgements

The first author is supported by Special Postdoctoral Researcher Program at RIKEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Tojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tojo, K., Yoshino, T. (2023). A q-Analogue of the Family of Poincaré Distributions on the Upper Half Plane. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics