Skip to main content

Continuous Kendall Shape Variational Autoencoders

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14071))

Included in the following conference series:

Abstract

We present an approach for unsupervised learning of geometrically meaningful representations via equivariant variational autoencoders (VAEs) with hyperspherical latent representations. The equivariant encoder/decoder ensures that these latents are geometrically meaningful and grounded in the input space. Mapping these geometry-

grounded latents to hyperspheres allows us to interpret them as points in a Kendall shape space. This paper extends the recent Kendall-shape VAE paradigm by Vadgama et al. by providing a general definition of Kendall shapes in terms of group representations to allow for more flexible modeling of KS-VAEs. We show that learning with generalized Kendall shapes, instead of landmark-based shapes, improves representation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bekkers, E.J., et al.: Roto-translation covariant convolutional networks for medical image analysis. In: MICCAI (2018). https://github.com/ebekkers/se2cnn

  2. Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E., Welling, M.: Geometric and physical quantities improve E(3) equivariant message passing. In: ICLR (2022)

    Google Scholar 

  3. Cesa, G., Lang, L., Weiler, M.: A program to build E(N)-equivariant steerable CNNs. In: ICLR (2022)

    Google Scholar 

  4. Chadebec, C., Allassonnière, S.: Data augmentation with variational autoencoders and manifold sampling (2021). https://doi.org/10.48550/ARXIV.2103.13751

  5. Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M.: Hyperspherical variational auto-encoders. In: 34th Conference on UAI (2018)

    Google Scholar 

  6. Guigui, N., Maignant, E., Trouvé, A., Pennec, X.: Parallel transport on Kendall shape spaces (2021). https://doi.org/10.48550/ARXIV.2103.04611

  7. Ilse, M., Tomczak, J.M., Louizos, C., Welling, M.: DIVA: domain invariant variational autoencoder (2020). https://openreview.net/forum?id=rJxotpNYPS

  8. Kaba, S.O., Mondal, A.K., Zhang, Y., Bengio, Y., Ravanbakhsh, S.: Equivariance with learned canonicalization functions (2022)

    Google Scholar 

  9. Kendall, D., Barden, D.M., Carne, T.K.: Shape and Shape Theory (1999)

    Google Scholar 

  10. Kendall, W.S., Last, G., Molchanov, I.S.: New perspectives in stochastic geometry. Oberwolfach Rep. 5(4), 2655–2702 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  12. Knigge, D.M., Romero, D.W., Bekkers, E.J.: Exploiting redundancy: separable group convolutional networks on lie groups. In: ICML (2022)

    Google Scholar 

  13. Kondor, R., Trivedi, S.: On the generalization of equivariance and convolution in neural networks to the action of compact groups. In: ICML (2018)

    Google Scholar 

  14. Kuzina, A., Pratik, K., Massoli, F.V., Behboodi, A.: Equivariant priors for compressed sensing with unknown orientation. In: Proceedings of the 39th ICML (2022)

    Google Scholar 

  15. Peeters, T.H., Prckovska, V., van Almsick, M., Vilanova, A., ter Haar Romeny, B.M.: Fast and sleek glyph rendering for interactive HARDI data exploration. In: 2009 IEEE Pacific Visualization Symposium, pp. 153–160. IEEE (2009)

    Google Scholar 

  16. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models (2014)

    Google Scholar 

  17. Tomczak, J.M.: Deep Generative Modeling. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93158-2

  18. Vadgama, S., Tomczak, J.M., Bekkers, E.J.: Kendall shape-VAE: learning shapes in a generative framework. In: NeurReps Workshop, NeurIPS 2022 (2022)

    Google Scholar 

  19. Weiler, M., Cesa, G.: General E(2)-Equivariant Steerable CNNs. In: Conference on Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  20. Weiler, M., Forré, P., Verlinde, E., Welling, M.: Coordinate independent convolutional networks-isometry and gauge equivariant convolutions on Riemannian manifolds (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharvaree Vadgama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vadgama, S., Tomczak, J.M., Bekkers, E. (2023). Continuous Kendall Shape Variational Autoencoders. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14071. Springer, Cham. https://doi.org/10.1007/978-3-031-38271-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38271-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38270-3

  • Online ISBN: 978-3-031-38271-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics