Skip to main content

Poisson Geometry of the Statistical Frobenius Manifold

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14072))

Included in the following conference series:

Abstract

New insights on parametric families of probability distributions (exponential type) are investigated. As shown by Combe-Manin (2020), flat exponential statistical manifolds are Frobenius manifolds. Frobenius manifolds correspond to a geometrization of the PDE equation named after Witten–Dijkgraaf–Verlinde–Verlinde. In this paper, we prove that this source of Frobenius manifolds is a Poisson manifold. This is shown using Dubrovin-Novikov’s approach to Frobenius structures, based on equations of hydrodynamical type. This finding makes connections with Koszul-Souriau-Vinberg’s past results.

Supported by the Max Planck Institute for Mathematics in Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balinskii, A.A., Novikov, S.P.: Poisson brackets of hydrodynamic type, Frobenius algebras and lie algebras. Soviet Math. Dokl. 32 (1985)

    Google Scholar 

  2. Barbaresco, F.: Geometric theory of heat from Souriau lie groups thermodynamics and Koszul hessian geometry: applications in information geometry for exponential families. Entropy 18, 386 (2016)

    Article  Google Scholar 

  3. Barbaresco, F.: Lie group statistics and lie group machine learning based on Souriau lie groups thermodynamics and Koszul-Souriau-fisher metric: new entropy definition as generalized Casimir invariant function in coadjoint representation. Entropy 22(6), 642 (2020)

    Article  MathSciNet  Google Scholar 

  4. Combe, N., Combe, P., Nencka, H.: Frobenius statistical manifolds and geometric invariants. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2021. LNCS, vol. 12829, pp. 565–573. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80209-7_61

    Chapter  MATH  Google Scholar 

  5. Combe, N., Combe, P., Nencka, H.: Pseudo-elliptic geometry of a class of Frobenius-manifolds & Maurer-Cartan structures. ArXiv:2107.01985 (2021)

  6. Combe, N., Combe, P., Nencka, H.: Algebraic properties of the information geometry’s fourth Frobenius manifold. In: Arai, K. (eds.) Advances in Information and Communication. FICC 2022. Lecture Notes in Networks and Systems, vol. 438, pp. 356–370. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98012-2_27

  7. Combe, N., Manin, Y..: F-manifolds and information geometry, Bull. London Maths Soc. 52(5) (2020)

    Google Scholar 

  8. Dubrovin, B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S. (eds.) Integrable Systems and Quantum Groups. LNM, vol. 1620, pp. 120–348. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0094793

    Chapter  Google Scholar 

  9. Dubrovin, B.A., Novikov, S.P.: On poisson brackets of hydrodynamic type. Dokl. Akad. Nauk SSSR, 294–297 (1984)

    Google Scholar 

  10. Koszul, J.L.: Introduction to Symplectic Geometry. Springer, Cham (2019)

    Book  MATH  Google Scholar 

  11. Manin, Y.I.: Three constructions of Frobenius manifolds: a comparative study. Asian J. Math 3(1), 179–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mokhov, O.I.: Theory of submanifolds, associativity equations in \(2d\) topological quantum field theories, and Frobenius manifolds. Theor. Math. Phys. 152, 1183–1190 (2007)

    Article  MATH  Google Scholar 

  13. Mokhov, O.I.: Realization of Frobenius manifolds as submanifolds in pseudo-euclidean spaces. Proc. Steklov Inst. Math. 267(1), 217–234 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nencka, H., Streater, R.F.: Information geometry for some lie algebras. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(3), 441–460 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Souriau, J.M.: Géométrie de l’espace des phases, calcul des variations et mécanique quantique

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemie Combe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Combe, N., Combe, P., Nencka, H. (2023). Poisson Geometry of the Statistical Frobenius Manifold. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2023. Lecture Notes in Computer Science, vol 14072. Springer, Cham. https://doi.org/10.1007/978-3-031-38299-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38299-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38298-7

  • Online ISBN: 978-3-031-38299-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics