Skip to main content

Cognitive Reinforcement for Enhanced Post Construction Aiming Fact-Check Spread

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, 20th International Conference (DCAI 2023)

Abstract

Despite the success of fact-checking agencies in presenting timely fact-checking reports on the main topics, the same success is not achieved for the dissemination of these reports. This work presents the definition of a set of heuristics applicable to messages (posts) in the microblogging environment, with the aim of increasing their engagement and, consequently, their reach. The proposed heuristics focus on two main tasks: summarisation, emotion-personality reinforcement. The results were evaluated through an experiment conducted with twenty participants, comparing the engagement of actual and generated posts. From the results of the experiment, it can be concluded that the strategy used by the generator is at least better than the one used by the fact-checking journal Snopes in its Twitter posts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The GPT-3 is more robust version as it uses a large amount of data in the pre-training phase. However, it was not used as it is not available as open source.

References

  1. Alroobaea, R., Mayhew, P.J.: How many participants are really enough for usability studies? In: 2014 Science and Information Conference, pp. 48–56. IEEE (2014)

    Google Scholar 

  2. Barbosa, M.A., Marcondes, F.S., Durães, D.A., Novais, P.: Microblogging environment simulator: an ethical approach. In: Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F. (eds.) PAAMS 2022. LNCS, vol. 13616, pp. 461–466. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18192-4_38

    Chapter  Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  4. Goswamy, T., Singh, I., Barkati, A., Modi, A.: Adapting a language model for controlled affective text generation. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 2787–2801 (2020)

    Google Scholar 

  5. Grootendorst, M.: KeyBERT: minimal keyword extraction with BERT (2020). https://doi.org/10.5281/zenodo.4461265

  6. Jurafsky, D., Martin, J.H.: Speech and Language Processing. Draft, 3rd edn. (2023). https://web.stanford.edu/jurafsky/slp3/

  7. Lal, S., Tiwari, L., Ranjan, R., Verma, A., Sardana, N., Mourya, R.: Analysis and classification of crime tweets. Procedia Comput. Sci. 167, 1911–1919 (2020)

    Article  Google Scholar 

  8. Marcondes, F.S.: A fact-checking profile on twitter (2020). Data can be found in ALGORITMI Centre. University of Minho, Braga, Portugal

    Google Scholar 

  9. Marcondes, F.S., Barbosa, M.A., Queiroz, R., Brito, L., Gala, A., Durães, D.: MentaLex: a mental processes lexicon based on the essay dataset. In: Bramer, M., Stahl, F. (eds.) SGAI-AI 2022. LNCS, vol. 13652, pp. 321–326. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21441-7_25

    Chapter  Google Scholar 

  10. Mention: Twitter report (2018). https://mention.com/en/reports/twitter/emojis/

  11. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, pp. 404–411 (2004)

    Google Scholar 

  12. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)

    Article  MathSciNet  Google Scholar 

  13. Novak Kralj, P., Smailovic, J., Sluban, B., Mozetic, I.: Sentiment of emojis. PloS One 10(12), e0144296 (2015)

    Google Scholar 

  14. Peters, C.: Emotion aside or emotional side? Crafting an ‘experience of involvement’ in the news. Journalism 12(3), 297–316 (2011)

    Article  Google Scholar 

  15. Piccolo, L., Blackwood, A.C., Farrell, T., Mensio, M.: Agents for fighting misinformation spread on twitter: design challenges. In: Proceedings of the 3rd Conference on Conversational User Interfaces, pp. 1–7 (2021)

    Google Scholar 

  16. Sims, S.: 7 tips for using emojis in social media marketing (2017). https://www.socialmediatoday.com/marketing/7-tips-using-emojis-social-media-marketing

  17. Verma, P., Pal, S., Om, H.: A comparative analysis on Hindi and English extractive text summarization. ACM Trans. Asian Low-Resourc. Lang. Inf. Process. (TALLIP) 18(3), 1–39 (2019)

    Article  Google Scholar 

  18. Zhang, H., Song, H., Li, S., Zhou, M., Song, D.: A survey of controllable text generation using transformer-based pre-trained language models. arXiv preprint arXiv:2201.05337 (2022)

Download references

Acknowledgements

This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/00319/2020;

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco S. Marcondes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbosa, M.A., Marcondes, F.S., Novais, P. (2023). Cognitive Reinforcement for Enhanced Post Construction Aiming Fact-Check Spread. In: Ossowski, S., Sitek, P., Analide, C., Marreiros, G., Chamoso, P., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 740. Springer, Cham. https://doi.org/10.1007/978-3-031-38333-5_21

Download citation

Publish with us

Policies and ethics