Skip to main content

Activity Classification with Inertial Sensors to Perform Gait Analysis

  • Conference paper
  • First Online:
Distributed Computing and Artificial Intelligence, 20th International Conference (DCAI 2023)

Abstract

The human gait can be analyzed to prevent injuries or gait disorders and make diagnoses or evaluate the progress during the rehabilitation therapies. This work aims to develop a system based on wearable inertial sensors to estimate flexion/extension angles of the lower limbs. Moreover, we have trained a classifier that allows the developed system to differentiate and classify autonomously between four activities of daily living. The proposed classifier is based on a feedforward neural network and has shown an accuracy of 98.33% with users that were not involved in the model’s training.

This work was supported by the Spanish Ministry of Universities through the Research and Doctorate Supporting Program FPU20/05137; by the Ministry of Universities and European Union, “financed by European Union - Next Generation EU” through Margarita Salas grant for the training of young doctors; by the Research Grants of the Miguel Hernández University of Elche through the grant 2022/PER/00002; by the Ministry of Science and Innovation through the project PID2019-108310RB-100; and by the Valencian Innovation Agency through the project GVRTE/2021/361542.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyodo, K., Masuda, T., Aizawa, J., Jinno, T., Morita, S.: Hip, knee, and ankle kinematics during activities of daily living: a cross-sectional study. Braz. J. Phys. Ther. 21(3), 159–166 (2017)

    Article  Google Scholar 

  2. Baker, R.: Gait analysis methods in rehabilitation. J. Neuroeng. Rehabil. 3(1), 1–10 (2006)

    Article  Google Scholar 

  3. Nadeau, S., Betschart, M., Bethoux, F.: Gait analysis for poststroke rehabilitation: the relevance of biomechanical analysis and the impact of gait speed. Phys. Med. Rehabil. Clin. 24(2), 265–276 (2013)

    Article  Google Scholar 

  4. Grant, A.D.: Gait analysis: normal and pathological function. JAMA 304(8), 907 (2010)

    Article  Google Scholar 

  5. Brunnekreef, J.J., Van Uden, C.J., van Moorsel, S., Kooloos, J.G.: Reliability of videotaped observational gait analysis in patients with orthopedic impairments. BMC Musculoskelet. Disord. 6(1), 1–9 (2005)

    Article  Google Scholar 

  6. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2–3), 90–126 (2006)

    Article  Google Scholar 

  7. Oh, S.E., Choi, A., Mun, J.H.: Prediction of ground reaction forces during gait based on kinematics and a neural network model. J. Biomech. 46(14), 2372–2380 (2013)

    Article  Google Scholar 

  8. Choi, A., Lee, J.M., Mun, J.H.: Ground reaction forces predicted by using artificial neural network during asymmetric movements. Int. J. Precis. Eng. Manuf. 14(3), 475–483 (2013)

    Article  Google Scholar 

  9. Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., Stricker, D.: Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors 17(6), 1257 (2017)

    Article  Google Scholar 

  10. Hamdi, M.M., Awad, M.I., Abdelhameed, M.M., Tolbah, F.A.: Lower limb motion tracking using IMU sensor network. In: 2014 Cairo International Biomedical Engineering Conference (CIBEC), pp. 28–33. IEEE, December 2014

    Google Scholar 

  11. Chen, D., et al.: Bring gait lab to everyday life: gait analysis in terms of activities of daily living. IEEE Internet Things J. 7(2), 1298–1312 (2019)

    Article  Google Scholar 

  12. Mannini, A., Trojaniello, D., Cereatti, A., Sabatini, A.M.: A machine learning framework for gait classification using inertial sensors: application to elderly, post-stroke and Huntington’s disease patients. Sensors 16(1), 134 (2016)

    Article  Google Scholar 

  13. INESCOP. https://inescop.es/en/

  14. Seel, T., Raisch, J., Schauer, T.: IMU-based joint angle measurement for gait analysis. Sensors 14(4), 6891–6909 (2014)

    Article  Google Scholar 

  15. Cutti, A.G., Ferrari, A., Garofalo, P., Raggi, M., Cappello, A., Ferrari, A.: Outwalk: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med. Biol. Eng. Comput. 48(1), 17–25 (2010)

    Article  Google Scholar 

  16. Martínez-Pascual, D., et al.: Machine learning and inertial sensors to estimate vertical ground reaction force during gait. In: Tardioli, D., Matellan, V., Heredia, G., Silva, M.F., Marques, L. (eds.) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. LNNS, vol. 590, pp. 264–273. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-21062-4_22

  17. Zijlstra, W., Hof, A.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2), 1–10 (2003)

    Article  Google Scholar 

  18. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 39(1), 43–62 (1997)

    Article  Google Scholar 

  19. Chollet, F., et al.: Keras. GitHub (2015). https://github.com/fchollet/keras

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Lopez-Nava, I.H., et al.: Gait activity classification on unbalanced data from inertial sensors using shallow and deep learning. Sensors 20(17), 4756 (2020)

    Google Scholar 

  22. Alsheikh, M.A., et al.: Deep activity recognition models with triaxial accelerometers. arXiv preprint arXiv:1511.04664 (2015)

  23. Lee, S.M., Yoon, S.M., Cho, H.: Human activity recognition from accelerometer data using convolutional neural network. In: 2017 IEEE International Conference on Big Data and Smart Computing (bigcomp). IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Martínez-Pascual .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez-Pascual, D., Catalán, J.M., García-Pérez, J.V., Sanchís, M., Arán-Ais, F., García-Aracil, N. (2023). Activity Classification with Inertial Sensors to Perform Gait Analysis. In: Ossowski, S., Sitek, P., Analide, C., Marreiros, G., Chamoso, P., Rodríguez, S. (eds) Distributed Computing and Artificial Intelligence, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 740. Springer, Cham. https://doi.org/10.1007/978-3-031-38333-5_8

Download citation

Publish with us

Policies and ethics