Skip to main content

Action Potential Like Spikes in Oyster Fungi Pleurotus Djamor

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 273 Accesses

Abstract

We record extra-cellular electrical potential of fruit bodies of oyster fungi Pleurotus djamor. We demonstrated that the fungi generate action potential like impulses of electrical potential. Trains of the spikes are observed. Two types of spiking activity are selected: high-frequency (period 2.6 min) and low-freq (period 14 min); transitions between modes of spiking are illustrated. An electrical response of fruit bodies to short (5 s) and long (60 s) thermal stimulation with open flame is analyses in details. We show that non-stimulated fruit bodies of a cluster react to thermal stimulation, with a single action-potential like spike, faster than the stimulate fruit body does.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gow, N.A.R.: Polarity and branching in fungi induced by electrical fields. In: Spatial Organization in Eukaryotic Microbes. IRL Press (1987)

    Google Scholar 

  2. Mcgillivray, A.M., Gow, N.A.R.: Applied electrical fields polarize the growth of mycelial fungi. Microbiology 132(9), 2515–2525 (1986)

    Google Scholar 

  3. Mcgillivray, A.M., Gow, N.A.R.: The transhyphal electrical current of Neuruspua crassa is carried principally by protons. Microbiology 133(10), 2875–2881 (1987)

    Google Scholar 

  4. Gow, N.A.R.: Transhyphal electrical currents in fungi. Microbiology 130(12), 3313–3318 (1984)

    Article  Google Scholar 

  5. Harold, F.M., Kropf, D.L., Caldwell, J.H.: Why do fungi drive electric currents through themselves? Experimental mycology 9(3), 3–86 (1985)

    Google Scholar 

  6. Savile, D.B.O.: Spore discharge in Basidiomycetes: a unified theory. Science 147(3654), 165–166 (1965)

    Article  Google Scholar 

  7. Leach, C.M.: An electrostatic theory to explain violent spore liberation by Drechslera turcica and other fungi. Mycologia 63–86 (1976)

    Google Scholar 

  8. Rayner, A.D.M.: The challenge of the individualistic mycelium. Mycologia 48–71 (1991)

    Google Scholar 

  9. Berbara, R.L.L., Morris, B.M., Fonseca, H.M.A.C., Reid, B., Gow, N.A.R., Daft, M.J.: Electrical currents associated with arbuscular mycorrhizal interactions. New Phytol. 129(3), 433–438 (1995)

    Article  Google Scholar 

  10. Slayman, C.L., Long, W.S., Gradmann, D.: Action potentials in Neurospora crassa, a mycelial fungus. Biochim. Biophys. Acta (BBA)—Biomembr. 426(4), 732–744 (1976)

    Google Scholar 

  11. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  12. Adamatzky, A.: Advances in Physarum machines: Sensing and Computing with Slime Mould, vol. 21. Springer, Berlin (2016)

    Google Scholar 

  13. Adamatzky, A.: Slime mould tactile sensor. Sens. Actuators, B Chem. 188, 38–44 (2013)

    Article  Google Scholar 

  14. Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)

    Article  Google Scholar 

  15. Whiting, J.G.H., de Lacy Costello, B.P., Adamatzky, A.: Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum. Sens. Actuators B: Chem. 191, 844–853 (2014)

    Google Scholar 

  16. Whiting, J.G.H., de Lacy Costello, B.P., Adamatzky, A.: Sensory fusion in Physarum polycephalum and implementing multi-sensory functional computation. Biosystems 119, 45–52 (2014)

    Google Scholar 

  17. Adamatzky, A., Neil, P.: Physarum sensor: biosensor for citizen scientists (2017)

    Google Scholar 

  18. Royse, D.J.: Speciality mushrooms and their cultivation. Hortic. Rev. 19, 59–97 (1997)

    Google Scholar 

  19. Md Asaduzzaman Khan and Mousumi Tania: Nutritional and medicinal importance of Pleurotus mushrooms: an overview. Food Rev. Intl. 28(3), 313–329 (2012)

    Article  Google Scholar 

  20. Thorn, R.G., Barron, G.L.: Carnivorous mushrooms. Science 224(4644), 76–78 (1984)

    Article  Google Scholar 

  21. Schütte, K.H.: Translocation in the fungi. New Phytol. 55(2), 164–182 (1956)

    Google Scholar 

  22. Aylmore, R.C., Todd, N.K., Ainsworth, A.M.: Microtubule bundles in Phanerochaete velutina. Trans. Br. Mycol. Soc. 84(2), 372–374 (1985)

    Article  Google Scholar 

  23. Iwamura, T.: Correlations between protoplasmic streaming and bioelectric potential of a slime mold, Physarum polycephalum. Shokubutsugaku Zasshi 62(735–736), 126–131 (1949)

    Article  Google Scholar 

  24. Kamiya, N., Abe, S.: Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid Sci. 5(2), 149–163 (1950)

    Article  Google Scholar 

  25. Kishimoto, U.: Rhythmicity in the protoplasmic streaming of a slime mold, Physarum polycephalum. I. a statistical analysis of the electric potential rhythm. J. Gen. Physiol. 41(6), 1205–1222 (1958)

    Google Scholar 

  26. Meyer, R., Stockem, W.: Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)

    Article  Google Scholar 

  27. Rands, R.D.: The production of spores of Alternaria solani in pure culture. Phytopathology 7(4), 316–317 (1917)

    Google Scholar 

  28. Hawker, L.E.: Physiology of Fungi. University Of London Press Ltd. (1950)

    Google Scholar 

  29. Reeves, R.J., Jackson, R.M.: Stimulation of sexual reproduction in Phytophthora by damage. Microbiology 84(2), 303–310 (1974)

    Google Scholar 

  30. Adamatzky, A., Jones, J.: Programmable reconfiguration of Physarum machines. Nat. Comput. 9(1), 219–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A. (2023). Action Potential Like Spikes in Oyster Fungi Pleurotus Djamor. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_1

Download citation

Publish with us

Policies and ethics