Skip to main content

Fungal Photosensors

  • Chapter
  • First Online:
Fungal Machines

Abstract

The rapidly developing research field of organic analogue sensors aims to replace traditional semiconductors with naturally occurring materials. Photosensors, or photodetectors, change their electrical properties in response to the light levels they are exposed to. Organic photosensors can be functionalised to respond to specific wavelengths, from ultra-violet to red light. Performing cyclic voltammetry on fungal mycelium and fruiting bodies under different lighting conditions shows no appreciable response to changes in lighting condition. However, functionalising the specimen using PEDOT:PSS yields in a photosensor that produces large, instantaneous current spikes when the light conditions change. Future works would look at interfacing this organic photosensor with an appropriate digital back-end for interpreting and processing the response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDonough, W.: Big and Green: Toward Sustainable Architecture in the 21st Century. Princeton Architectural Press (2002)

    Google Scholar 

  2. Kibert, C.J.: Sustainable Construction: Green Building Design and Delivery. Wiley (2016)

    Google Scholar 

  3. Kim, K.-H.: Beyond green: growing algae facade. In: ARCC Conference Repository (2013)

    Google Scholar 

  4. Martokusumo, W., Koerniawan, M.D., Poerbo, H.W., Ardiani, N.A., Krisanti, S.H.: Algae and building façade revisited. a study of façade system for infill design. J. Arch. Urban. 41(4), 296–304 (2017)

    Google Scholar 

  5. Sara Wilkinson, Paul Stoller, Peter Ralph, and Brenton Hamdorf. Feasibility of algae building technology in sydney. Feasibility of Algae Building Technology in Sydney, 2016

    Google Scholar 

  6. Philip Ross. Your rotten future will be great. The Routledge Companion to Biology in Art and Architecture, page 252, 2016

    Google Scholar 

  7. Freek VW Appels, Serena Camere, Maurizio Montalti, Elvin Karana, Kaspar MB Jansen, Jan Dijksterhuis, Pauline Krijgsheld, and Han AB Wösten. Fabrication factors influencing mechanical, moisture-and water-related properties of mycelium-based composites. Materials & Design, 161:64–71, 2019

    Google Scholar 

  8. Dahmen, J.: Soft matter: Responsive architectural operations. Technoetic Arts 14(1–2), 113–125 (2016)

    Article  Google Scholar 

  9. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconvent. Comput. 14 (2019)

    Google Scholar 

  10. Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis, G. (eds.), From Parallel to Emergent Computing. CRC Group/Taylor & Francis (2019)

    Google Scholar 

  11. Gizzie, N., Mayne, R., Patton, D., Kendrick, P., Adamatzky, A.: On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms’ electrical characteristics. Biosystems 147, 28–34 (2016)

    Article  Google Scholar 

  12. Gizzie, N., Mayne, R., Yitzchaik, S., Ikbal, M., Adamatzky, A.: Living wires-effects of size and coating of gold nanoparticles in altering the electrical properties of physarum polycephalum and lettuce seedlings. Nano LIFE 6(01), 1650001 (2016)

    Article  Google Scholar 

  13. Giraldo, J.P., Landry, M.P., Faltermeier, S.M., McNicholas, T.P., Iverson, N.M., Boghossian, A.A., Reuel, N.F., Hilmer, A.J., Sen, F., Brew, J.A., et al.: Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13(4), 400–408 (2014)

    Article  Google Scholar 

  14. Faizan, M., Faraz, A., Yusuf, M., Khan, S.T., Hayat, S.: Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56, 678–686 (2018)

    Article  Google Scholar 

  15. Berzina, T., Dimonte, A., Cifarelli, A., Erokhin, V.: Hybrid slime mould-based system for unconventional computing. Int. J. Gen. Syst. 44(3), 341–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dimonte, A., Battistoni, S., Erokhin, V.: Physarum in hybrid electronic devices. In: Advances in Physarum Machines, pp. 91–107. Springer (2016)

    Google Scholar 

  17. Tokito, S.: Flexible printed organic thin-film transistor devices and integrated circuit applications. In: 2018 International Flexible Electronics Technology Conference (IFETC), pp 1–2, Aug. 2018

    Google Scholar 

  18. Endoh, H., Toguchi, S., Kudo, K.: High performance vertical-type organic transistors and organic light emitting transistors. In: Polytronic 2007—6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, pp. 139–142, Jan 2007

    Google Scholar 

  19. Tang, W., Zhao, J., Li, Q., Guo, X.: Highly sensitive low power ion-sensitive organic thin-film transistors. In: 2018 9th International Conference on Computer Aided Design for Thin-Film Transistors (CAD-TFT), pp. 1, Nov. 2018

    Google Scholar 

  20. Mizukami, M., Cho, S., Watanabe, K., Abiko, M., Suzuri, Y., Tokito, S., Kido, J.: Flexible organic light-emitting diode displays driven by inkjet-printed high-mobility organic thin-film transistors. IEEE Electron Dev. Lett. 39(1), 39–42 (2018)

    Article  Google Scholar 

  21. Sano, T., Suzuri, Y., Koden, M., Yuki, T., Nakada, H., Kido, J.: Organic light emitting diodes for lighting applications. In: 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), vol. 26, pp. 1–4, July 2019

    Google Scholar 

  22. Marien, H., Steyaert, M., Heremans, P.: Analog Organic Electronics. Springer (2013)

    Google Scholar 

  23. Ocaya, R.O., Al-Sehemi, A.G., Al-Ghamdi, A., El-Tantawy, F., Yakuphanoglu, F.: Organic semiconductor photosensors. J. Alloys Compd. 702, 520–530 (2017)

    Article  Google Scholar 

  24. Dickey, S., Eliasson, B., Moddel, G.: Organic photosensors for ferroelectric liquid crystal spatial light modulators. Organic Thin Films for Photonic Applications, SaE10 (1999)

    Google Scholar 

  25. Hamilton, M.C., Kanicki, J.: Organic polymer thin-film transistor photosensors. IEEE J. Sel. Top. Quantum Electron. 10(4), 840–848 (2004)

    Article  Google Scholar 

  26. Manna, E., Xiao, T., Shinar, J., Shinar, R.: Organic photodetectors in analytical applications. Electronics 4, 688–722 (2015)

    Article  Google Scholar 

  27. Zeng, Z., Zhong, Z., Zhong, W., Zhang, J., Ying, L., Gang, Yu., Huang, F., Cao, Y.: High-detectivity organic photodetectors based on a thick-film photoactive layer using a conjugated polymer containing a naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole unit. J. Mater. Chem. C 7, 6070–6076 (2019)

    Article  Google Scholar 

  28. Natali, D., Caironi, M.: Organic Photodetectors (2016)

    Google Scholar 

  29. Cicoira, F.: Flexible, strechable and healable electronics. In: 2018 International Flexible Electronics Technology Conference (IFETC), p. 1, Aug 2018

    Google Scholar 

  30. Lee, H., Kim, J., Kim, H., Kim, Y.: Strong photo-amplification effects in flexible organic capacitors with small molecular solid-state electrolyte layers sandwiched between photo-sensitive conjugated polymer nanolayers. Sci. Rep. 6, 19527 (2016)

    Article  Google Scholar 

  31. Beasley, A.E., Abdelouahab, M.-S., Lozi, R., Powell, A.L., Adamatzky, A.: On memfractance of plants and fungi (2020). arXiv:2005.10500

  32. Carlile, M.J.: The Photobiology of Fungi. Ann. Rev. 16 (1965)

    Google Scholar 

  33. Furuya, M.: Photobiology of fungi. In: Kendrick, R.E., Kronenberg, G.H.M. (eds.) Photomorphogenesis in Plants. Springer, Dordrecht (1986)

    Google Scholar 

  34. Beasley, A.E., Powell, A.L., Adamatzky, A.: Memristive properties of mushrooms (2020). arXiv:2002.06413

  35. Lavery, L.L., Whiting, G.L., Arias, A.C.: All ink-jet printed polyfluorene photosensor for high illuminance detection. Organ. Electron. 12(4), 682–685 (2011)

    Article  Google Scholar 

  36. Pietsch, M., Jäckle, S., Christiansen, S.: Interface investigation of planar hybrid n-si/pedot: Pss solar cells with open circuit voltages up to 645 mv and efficiencies of 12.6%. Appl. Phys. A 115, 1109–1113 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beasley, A.E., Tsompanas, MA., Adamatzky, A. (2023). Fungal Photosensors. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_10

Download citation

Publish with us

Policies and ethics