Skip to main content

Electrical Signal Transfer by Fungi

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 455 Accesses

Abstract

Mycelium-bound composites consist of discrete substrate elements joined together by filamentous hypha strands. These composites can be moulded or extruded into custom components of desired shapes. When live fungi are present these composites exhibit electrical conductivity as well as memfractive and capacitive properties. These composites might be used in nonlinear electrical circuits. We investigated the AC conductive properties of mycelium-bound composites and fungal fruit bodies at higher frequencies, spanning three overlapping frequency ranges: 20 Hz to 300 kHz, 10 Hz to 4 MHz, and 50 kHz to 3 GHz, to advance fungal electronics. Our measurements revealed that mycelium-bound composites primarily function as low-pass filters, with an average cut-off frequency of 500 kHz and a roll-off rate of \(-\)14  dB/decade. Within the pass band, the average attenuation is less than 1 dB. Fungal fruiting bodies have significantly lower mean cut-off frequencies that range from 5 Khz to 50 Khz depending on the species. Their roll-off range from \(-20\)  to \(-30\)  decibels per decade, with mean attenuation across the pass band less than 3 decibels. The precise mechanism underlying frequency-dependent attenuation is unclear. However, the high-water content, which is around 80 % in mycelium-bound composites and up to 92 % in fruiting bodies, is important. Because of the presence of dissolved ionizable solids, this water content is electrically conductive, making it a likely contributing factor. This research looks into the potential applications of mycelium-bound composites and fungal fruiting bodies in analog computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saez, D., Grizmann, D., Trautz, M., Werner, A.: Exploring the binding capacity of mycelium and wood-based composites for use in construction. Biomimetics 7(2) (2022)

    Google Scholar 

  2. Karana, E., Blauwhoff, D., Hultink, E.-J., Camere, S.: When the material grows: a case study on designing (with) mycelium-based materials. Int. J. Des. 12(2) (2018)

    Google Scholar 

  3. Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S.: Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397 (2020)

    Article  Google Scholar 

  4. Cerimi, K., Can Akkaya, K., Pohl, C., Schmidt, B., Neubauer, P.: Fungi as source for new bio-based materials: a patent review. Fungal Biol. Biotechnol. 6(1), 1–10 (2019)

    Google Scholar 

  5. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconv. Comput. 14 (2019)

    Google Scholar 

  6. Beasley, A.E., Powell, A.L., Adamatzky, A.: Capacitive storage in mycelium substrate (2020). arXiv:2003.07816

  7. Beasley, A.E., Abdelouahab, M.-S., Lozi, R., Powell, A.L., Adamatzky, A.: Mem-fractive properties of mushrooms (2020). arXiv:2002.06413

  8. Beasley, A.E., Powell, A.L., Adamatzky, A.: Fungal photosensors (2020). arXiv:2003.07825

  9. Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S.: Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397 (2020)

    Article  Google Scholar 

  10. Soh, E., Yong Chew, Z., Saeidi, N., Javadian, A., Hebel, D., Le Ferrand, H.: Development of an extrudable paste to build mycelium-bound composites. Mater. Des. 195, 109058 (2020)

    Google Scholar 

  11. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On boolean gates in fungal colony. Biosystems 193, 104138 (2020)

    Google Scholar 

  12. Adamatzky, A., Chiolerio, A., Sirakoulis, G.: On resistive spiking of fungi (2020). arXiv:2009.00292

  13. Adamatzky, A., Gandia, A., Chiolerio, A.: Fungal sensing skin. Fungal Biol. Biotechnol. 8(1), 1–6 (2021)

    Google Scholar 

  14. Przyczyna, D., Szacilowski, K., Chiolerio, A., Adamatzky, A.: Electrical frequency discrimination by fungi pleurotus ostreatus (2022). arXiv:2210.01775

  15. Phillips, N., Gandia, A., Adamatzky, A.: Electrical response of fungi to changing moisture content. TBC J. (2022)

    Google Scholar 

  16. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  17. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  18. Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis, G. (eds.) From Parallel to Emergent Computing. CRC Group/Taylor & Francis (2019)

    Google Scholar 

  19. Adamatzky, A., Ayres, P., Beasley, A.E., Roberts, N., Tegelaar, M., Tsompanas, M.-A., Wösten, H.A.B.: Logics in fungal mycelium networks (2021). arXiv:2112.07236

  20. Shao, B., Weerasekera, R., Tareke Woldegiorgis, A., Zheng, L.-R., Liu, R., Zapka, W.: High frequency characterization and modelling of inkjet printed interconnects on flexible substrate for low-cost rfid applications. In: Electronics System-Integration Technology Conference, pp. 695–700 (2008)

    Google Scholar 

  21. Shao, B., Weerasekera, R., Zheng, L.-R., Liu, R., Zapka, W., Lindberg, P.: High frequency characterization of inkjet printed coplanar waveguides. In: IEEE Workshop on Signal Propagation on Interconnects, pp. 1–4 (2008)

    Google Scholar 

  22. Miller, A.: Oyster grain spawn (2022). https://www.annforfungi.co.uk/shop/oyster-grain-spawn/. [Online; accessed 18-Sept-2022]

  23. Precision, B.K.: Model 891 (2022). https://www.bkprecision.pl/files/891_datasheet.pdf. [Online; accessed 18-Sept-2022]

  24. Cypher-Instruments.: C60 network analyzer (2022). http://www.cypherinstruments.co.uk/. [Online; accessed 18-Sept-2022]

  25. NanoRFE.: Vector network analyse, model NanoVNA-F V2 (2022). https://nanorfe.com/nanovna-v2.html. [Online; accessed 18-Sept-2022]

  26. Danninger, D., Pruckner, R., Holzinger, L., Koeppe, R., Kaltenbrunner, M.: Myceliotronics: fungal mycelium skin for sustainable electronics. Sci. Adv. 8(45), eadd7118 (2022)

    Google Scholar 

  27. Ishtaiwi, M., Hajjyahya, M., Habbash, S.: Electrical properties of dead sea water. J. Appl. Math. Phys. 9(12), 3094–3101 (2021)

    Article  Google Scholar 

  28. Porle, R.R., Ruslan, N.S., Ghani, N.M., Arif, N.A., Ismail, S.R., Parimon, N., Mamat, M.: A survey of filter design for audio noise reduction. J. Adv. Rev. Sci. Res. 12(1), 26–44 (2015)

    Google Scholar 

  29. Williams, A.B.: Analog Filter and Circuit Design Handbook. McGraw-Hill Education (2014)

    Google Scholar 

  30. Thiele, N.: Bandpass subwoofer design. J. Audio Eng. Soc. 62(3), 145–160 (2014)

    Article  Google Scholar 

  31. Parhami, B.: Parallel processing with big data (2019)

    Google Scholar 

  32. Cao, K., Liu, Y., Meng, G., Sun, Q.: An overview on edge computing research. IEEE Access 8, 85714–85728 (2020)

    Article  Google Scholar 

  33. Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P., Nikolopoulos, D.S.: Challenges and opportunities in edge computing. In: 2016 IEEE International Conference on Smart Cloud (SmartCloud), pp. 20–26. IEEE (2016)

    Google Scholar 

  34. Krestinskaya, O., Pappachen James, A., Ong Chua, L.: Neuromemristive circuits for edge computing: a review. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 4–23 (2019)

    Google Scholar 

  35. Csaba, G., Raychowdhury, A., Datta, S., Porod, W.: Computing with coupled oscillators: theory, devices, and applications. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018)

    Google Scholar 

  36. Csaba, G., Porod, W.: Coupled oscillators for computing: a review and perspective. Appl. Phys. Rev. 7(1), 011302 (2020)

    Article  Google Scholar 

  37. Chou, J., Bramhavar, S., Ghosh, S., Herzog, W.: Analog coupled oscillator based weighted ising machine. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  38. MacKay, D.M.: High-speed electronic-analogue computing techniques. Proc. IEE-Part B: Radio Electron. Eng. 102(5), 609–620 (1955)

    Google Scholar 

  39. Ronaldo da Costa Bento, C., Carlos Gomes Wille, E.: Bio-inspired routing algorithm for manets based on fungi networks. Ad Hoc Netw. 107, 102248 (2020)

    Google Scholar 

  40. Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Mahdi Dehshibi, M.: Reactive fungal wearable. Biosystems 199, 104304 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phillips, N., Weerasekera, R., Roberts, N., Adamatzky, A. (2023). Electrical Signal Transfer by Fungi. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_16

Download citation

Publish with us

Policies and ethics