Skip to main content

Towards Fungal Computer

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 270 Accesses

Abstract

We propose that fungi Basidiomycetes can be used as computing devices: information is represented by spikes of electrical activity, a computation is implemented in a mycelium network and an interface is realised via fruit bodies. In a series of scoping experiments we demonstrate that electrical activity recorded on fruits might act as a reliable indicator of the fungi’s response to thermal and chemical stimulation. A stimulation of a fruit is reflected in changes of electrical activity of other fruits of a cluster, i.e. there is distant information transfer between fungal fruit bodies. In an automaton model of a fungal computer we show how to implement computation with fungi and demonstrate that a structure of logical functions computed is determined by mycelium geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    © Espresso Mushroom Company, Brighton, UK.

  2. 2.

    © SPES MEDICA SRL Via Buccari 21 16153 Genova, Italy.

  3. 3.

    Pico Technology, St. Neots, Cambridgeshire, UK.

References

  1. Carlile, M.J., Watkinson, S.C., Gooday, G.W.: The fungi. Gulf Professional Publishing (2001)

    Google Scholar 

  2. Smith, M.L., Bruhn, J,N., Anderson, J.B.: The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368), 428 (1992)

    Google Scholar 

  3. Dai, Y.-C., Cui, B.-K.: Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal Biol. 115(9), 813–814 (2011)

    Article  Google Scholar 

  4. Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific (2010)

    Google Scholar 

  5. Adamatzky, A. (eds.): Advances in Physarum Machines: Sensing and Computing with Slime Mould. Springer (2016)

    Google Scholar 

  6. Adamatzky, A.: On spiking behaviour of oyster fungi Pleurotus djamor. Sci. Rep. 7873 (2018)

    Google Scholar 

  7. Gallé, A., Lautner, S., Flexas, J., Fromm, J.: Environmental stimuli and physiological responses: the current view on electrical signalling. Environ. Exp. Botany 114, 15–21 (2015)

    Article  Google Scholar 

  8. Molliard, M.M.: De l’action du Marasmius Oreades Fr. sur la végétation. Bulletin De La Societe Botanique De France 57(1), 62–69 (1910)

    Google Scholar 

  9. Shantz, H.L., Piemeisel, R.L.: Fungus fairy rings in eastern Colorado and their effects on vegetation. J. Agric. Res. XI(5), 191–245 (1917)

    Google Scholar 

  10. Dowson, C.G., Rayner, A.D.M., Boddy, L.: Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter II. Resource capture and persistence. New Phytol. 109(3):343–349 (1988)

    Google Scholar 

  11. Boddy, L., Wells, J.M., Culshaw, C., Donnelly, D.P.: Fractal analysis in studies of mycelium in soil. Geoderma 88(3):301–328 (1999)

    Google Scholar 

  12. Watkinson, S.C.: The relation between nitrogen nutrition and formation of mycelial strands in Serpula lacrimans. Trans. British Mycol. Soc. 64(2), 195–200 (1975)

    Google Scholar 

  13. Dowson, C.G., Rayner, A.D.M., Boddy, L.: Outgrowth patterns of mycelial cord-forming basidiomycetes from and between woody resource units in soil. Microbiology 132(1), 203–211, (1986)

    Google Scholar 

  14. Jennings, D.H.: The Physiology of Fungal Nutrition. Cambridge University Press (1995)

    Google Scholar 

  15. Boddy, L., Hynes, J., Bebber, D.P., Fricker, M.D.: Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50(1):9–19 (2009)

    Google Scholar 

  16. Hoa, H.T., Wang, C.-L.: The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(1), 14–23 (2015)

    Google Scholar 

  17. Rayner, A.D.M.: The challenge of the individualistic mycelium. Mycologia 48–71 (1991)

    Google Scholar 

  18. Regalado, C.M., Crawford, J.W., Ritz, K., Sleeman, B.D.: The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycol. Res. 100(12), 1473–1480 (1996)

    Article  Google Scholar 

  19. Bolton, R.G., Boddy, L.: Characterization of the spatial aspects of foraging mycelial cord systems using fractal geometry. Mycol. Res. 97(6), 762–768 (1993)

    Google Scholar 

  20. Ritz, K.: Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol. Ecol. 16(4), 269–279 (1995)

    Article  Google Scholar 

  21. Adamatzky, A.: Developing proximity graphs by Physarum polycephalum: does the plasmodium follow the toussaint hierarchy? Parallel Proc. Lett. 19(01), 105–127 (2009)

    Article  MathSciNet  Google Scholar 

  22. Adamatzky, A. (ed.).: Bioevaluation of World Transport Networks. World Scientific (2012)

    Google Scholar 

  23. Hanson, K.L., Nicolau, D.V. Jr., Filipponi, L., Wang, L., Lee, A.P., Nicolau, D.V.: Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2(10), 1212–1220 (2006)

    Google Scholar 

  24. Held, M., Edwards, C., Nicolau, D.V.: Examining the behaviour of fungal cells in microconfined mazelike structures. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, vol. 6859, p. 68590U. International Society for Optics and Photonics (2008)

    Google Scholar 

  25. Held, M., Edwards, C., Nicolau, D.V.: Fungal intelligence; or on the behaviour of microorganisms in confined micro-environments. J. Phys.: Conf. Ser. 178, 012005. IOP Publishing (2009)

    Google Scholar 

  26. Held, M., Lee, A.P., Edwards, C., Nicolau, D.V.: Microfluidics structures for probing the dynamic behaviour of filamentous fungi. Microelectron. Eng. 87(5–8), 786–789 (2010)

    Google Scholar 

  27. Held, M., Edwards, C., Nicolau, D.V.: Probing the growth dynamics of neurospora crassa with microfluidic structures. Fungal Biol. 115(6), 493–505 (2011)

    Google Scholar 

  28. Nakagaki, T., Yamada, H., Tóth, Á.: Intelligence: maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  29. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152(9), 767–770 (2001)

    Article  Google Scholar 

  30. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92(1–2), 47–52 (2001)

    Article  Google Scholar 

  31. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Phys. Rev. Lett. 99(6), 068104 (2007)

    Article  Google Scholar 

  32. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Google Scholar 

  33. Shirakawa, T., Adamatzky, A., Gunji, Y.-P., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by physarum polycephalum. Int. J. Bifurc. Chaos 19(09), 3109–3117 (2009)

    Article  Google Scholar 

  34. Jones, J., Adamatzky, A.: Computation of the travelling salesman problem by a shrinking blob. Nat. Comput. 13(1), 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  35. Slayman, C.L., Long, W.S., Gradmann, D.: Action potentials. In: Neurospora crassa, a mycelial fungus. Biochimica et Biophysica Acta (BBA)—Biomembranes 426(4), 732–744 (1976)

    Google Scholar 

  36. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  37. Jones, J., Adamatzky, A.: Slime mould inspired generalised Voronoi diagrams with repulsive fields (2015). arXiv:1503.06973

  38. Adamatzky, A.: Collision-based computing in Belousov-Zhabotinsky medium. Chaos Sol. Fract. 21(5), 1259–1264 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gorecki, J., Gorecka, J.N., Igarashi, Y.: Information processing with structured excitable medium. Nat. Comput. 8(3), 473–492 (2009)

    Google Scholar 

  40. Schütte, K.H.: Translocation in the fungi. New Phytologist 55(2), 164–182 (1956)

    Google Scholar 

  41. Shah, Z.A., Ashraf, M., Ishtiaq, M.: Comparative study on cultivation and yield performance of oyster mushroom (pleurotus ostreatus) on different substrates (wheat straw, leaves, saw dust). Pakistan J. Nutr. 3(3), 158–160 (2004)

    Article  Google Scholar 

  42. Sánchez, C.: Cultivation of pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 85(5), 1321–1337 (2010)

    Article  Google Scholar 

  43. Oei, P. et al.: Mushroom Cultivation: Appropriate Technology for Mushroom Growers. Number Ed. 3. Backhuys Publishers (2003)

    Google Scholar 

  44. Mummert, H., Gradmann, D.: Voltage dependent potassium fluxes and the significance of action potentials in acetabularia. Biochimica et Biophysica Acta (BBA)-Biomembranes 443(3), 443–450 (1976)

    Google Scholar 

  45. Markus, M., Hess, B.: Isotropic cellular automaton for modelling excitable media. Nature 347(6288), 56 (1990)

    Article  Google Scholar 

  46. Gerhardt, M., Schuster, H., Tyson, J.J.: A cellular automation model of excitable media including curvature and dispersion. Science 247(4950), 1563–1566 (1990)

    Google Scholar 

  47. Weimar, J.R., Tyson, J.J., Watson, L.T.: Diffusion and wave propagation in cellular automaton models of excitable media. Physica D: Nonlinear Phenomena 55(3–4), 309–327 (1992)

    Google Scholar 

  48. Lechleiter, J., Girard, S., Peralta, E., Clapham, D.: Spiral calcium wave propagation and annihilation in xenopus laevis oocytes. Science 252(5002), 123–126 (1991)

    Article  Google Scholar 

  49. Saxberg, B.E.H., Cohen, R.J.: Cellular automata models of cardiac conduction. In: Theory of Heart, pp. 437–476. Springer (1991)

    Google Scholar 

  50. Dowle, M., Mantel, R.M., Barkley, D.: Fast simulations of waves in three-dimensional excitable media. Int. J. Bifurc. Chaos 7(11), 2529–2545 (1997)

    Google Scholar 

  51. Siregar, P., Sinteff, J.P., Julen, N., Le Beux, P.: An interactive 3d anisotropic cellular automata model of the heart. Comput. Biomed. Res. 31(5), 323–347 (1998)

    Article  Google Scholar 

  52. Ye, P., Entcheva, E., Grosu, R., Smolka, S.A.: Efficient modeling of excitable cells using hybrid automata. In: Proceedings of the CMSB, vol. 5, pp. 216–227 (2005)

    Google Scholar 

  53. Atienza, F.A., Carrión, J.R., Alberola, A.G., Álvarez, J.L.R., Muñoz, J.J.S., Sánchez, J.M., Chávarri, M.V.: A probabilistic model of cardiac electrical activity based on a cellular automata system. Revista Española de Cardiología (English Edition) 58(1), 41–47 (2005)

    Google Scholar 

  54. Karst, N., Dralle, D., Thompson, S.: Spiral and rotor patterns produced by fairy ring fungi. PloS One 11(3), e0149254 (2016)

    Article  Google Scholar 

  55. Dahlberg, A., Stenlid, J.: Spatiotemporal patterns in ectomycorrhizal populations. Canadian J. Botany 73(S1), 1222–1230 (1995)

    Article  Google Scholar 

  56. Pickard, B.G.: Action potentials in higher plants. Bot. Rev. 39(2), 172–201 (1973)

    Google Scholar 

  57. Belousov, B.P.: A periodic reaction and its mechanism. Compil. Abstr. Radiat. Med. 147(145), 1 (1959)

    Google Scholar 

  58. Zhabotinsky, A.M.: Periodic processes of malonic acid oxidation in a liquid phase. Biofizika 9(306–311), 11 (1964)

    Google Scholar 

  59. Kuhnert, L.: A new optical photochemical memory device in a light-sensitive chemical active medium. Nature (1986)

    Google Scholar 

  60. Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light-sensitive chemical waves (1989)

    Google Scholar 

  61. Kaminaga, A., Vanag, V.K., Epstein, I.R.: A reaction–diffusion memory device. Angewandte Chemie Int. Ed. 45(19), 3087–3089 (2006)

    Google Scholar 

  62. Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. J. Phys. Chem. 100(49), 18970–18975 (1996)

    Article  Google Scholar 

  63. Sielewiesiuk, J., Górecki, J.: Logical functions of a cross junction of excitable chemical media. J. Phys. Chem. A 105(35), 8189–8195 (2001)

    Article  MATH  Google Scholar 

  64. Steinbock, O., Tóth, Á., Showalter, K.: Navigating complex labyrinths: optimal paths from chemical waves. Science 868–868 (1995)

    Google Scholar 

  65. Rambidi, N.G., Yakovenchuk, D.: Chemical reaction-diffusion implementation of finding the shortest paths in a labyrinth. Phys. Rev. E 63(2), 026607 (2001)

    Article  Google Scholar 

  66. Andrew Adamatzky and Benjamin de Lacy Costello: Collision-free path planning in the Belousov-Zhabotinsky medium assisted by a cellular automaton. Naturwissenschaften 89(10), 474–478 (2002)

    Article  Google Scholar 

  67. Gorecki, J., Gorecka, J.N., Adamatzky, A.: Information coding with frequency of oscillations in Belousov-Zhabotinsky encapsulated disks. Phys. Rev. E 89(4), 042910 (2014)

    Google Scholar 

  68. Adamatzky, A., de Lacy Costello, B., Melhuish, C., Ratcliffe, N.: Experimental implementation of mobile robot taxis with onboard Belousov–Zhabotinsky chemical medium. Mater. Sci. Eng.: C 24(4), 541–548 (2004)

    Google Scholar 

  69. Yokoi, H., Adamatzky, A., de Lacy Costello, B., Melhuish, C.: Excitable chemical medium controller for a robotic hand: Closed-loop experiments. Int. J. Bifurc. Chaos 14(09), 3347–3354 (2004)

    Google Scholar 

  70. Vazquez-Otero, A., Faigl, J., Duro, N., Dormido, R.: Reaction-diffusion based computational model for autonomous mobile robot exploration of unknown environments. IJUC 10(4), 295–316 (2014)

    Google Scholar 

  71. Agladze, K., Aliev, R.R., Yamaguchi, T., Yoshikawa, K.: Chemical diode. J. Phys. Chem. 100(33), 13895–13897 (1996)

    Article  Google Scholar 

  72. Igarashi, Y., Gorecki, J.: Chemical diodes built with controlled excitable media. IJUC 7(3), 141–158 (2011)

    Google Scholar 

  73. Gorecki, J., Gorecka, J.N.: Information processing with chemical excitations–from instant machines to an artificial chemical brain. Int. J. Unconv. Comput. 2(4) (2006)

    Google Scholar 

  74. Stovold, J., O’Keefe, S.: Simulating neurons in reaction-diffusion chemistry. In: International Conference on Information Processing in Cells and Tissues, pp. 143–149. Springer (2012)

    Google Scholar 

  75. Gentili, P.L., Horvath, V., Vanag, V.K., Epstein, I.R.: Belousov-Zhabotinsky “chemical neuron” as a binary and fuzzy logic processor. IJUC 8(2), 177–192 (2012)

    Google Scholar 

  76. Takigawa-Imamura, H., Motoike, I.N.: Dendritic gates for signal integration with excitability-dependent responsiveness. Neural Netw. 24(10), 1143–1152 (2011)

    Google Scholar 

  77. Gruenert, G., Gizynski, K., Escuela, G., Ibrahim, B., Gorecki, J., Dittrich, P.: Understanding networks of computing chemical droplet neurons based on information flow. Int. J. Neural Syst. 25(07), 1450032 (2015)

    Article  Google Scholar 

  78. Stovold, J., O’Keefe, S.: Reaction–diffusion chemistry implementation of associative memory neural network. Int. J. Parallel Emerg. Distrib. Syst. 1–21 (2016)

    Google Scholar 

  79. Stovold, J., O’Keefe, S.: Associative memory in reaction-diffusion chemistry. Adv. Unconven. Comput. 141–166. Springer (2017)

    Google Scholar 

  80. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J. Phys. Chem. A 107(10), 1664–1669 (2003)

    Article  Google Scholar 

  81. Yoshikawa, K., Motoike, I., Ichino, T., Yamaguchi, T., Igarashi, Y., Gorecki, J., Gorecka, J.N.: Basic information processing operations with pulses of excitation in a reaction-diffusion system. IJUC 5(1), 3–37 (2009)

    Google Scholar 

  82. Escuela, G., Gruenert, G., Dittrich, P.: Symbol representations and signal dynamics in evolving droplet computers. Nat. Comput. 13(2), 247–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  83. Gruenert, G., Gizynski, K., Escuela, G., Ibrahim, B., Gorecki, J., Dittrich, P.: Understanding networks of computing chemical droplet neurons based on information flow. Int. J. Neural Syst. 1450032 (2014)

    Google Scholar 

  84. Gorecki, J., Gizynski, K., Guzowski, J., Gorecka, J.N., Garstecki, P., Gruenert, G., Dittrich, P.: Chemical computing with reaction-diffusion processes. Phil. Trans. R. Soc. A 373(2046), 20140219 (2015)

    Article  Google Scholar 

  85. Andrew Adamatzky and Benjamin de Lacy Costello: Binary collisions between wave-fragments in a sub-excitable Belousov-Zhabotinsky medium. Chaos Sol. Fract. 34(2), 307–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. Toth, R., Stone, C., de Lacy Costello, B., Adamatzky, A., Bull, L.: Simple collision-based chemical logic gates with adaptive computing. Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains: Interdisciplinary Gains, p. 162 (2010)

    Google Scholar 

  87. Adamatzky, A., De Lacy, B., Costello, L.B., Holley, J.: Towards arithmetic circuits in sub-excitable chemical media. Israel J. Chem. 51(1), 56–66 (2011)

    Article  Google Scholar 

  88. de Lacy Costello, B., Toth, R., Stone, C., Adamatzky, A., Bull, L.: Implementation of glider guns in the light-sensitive Belousov-Zhabotinsky medium. Physical Rev. E 79(2), 026114 (2009)

    Google Scholar 

  89. Toth, R., Stone, C., Adamatzky, A., de Lacy Costello, B., Bull, L.: Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction. Chaos Sol. Fract. 41(4), 1605–1615 (2009)

    Google Scholar 

  90. Adamatzky, A.: Slime mould logical gates: exploring ballistic approach (2010). arXiv:1005.2301

  91. De Lacy, B., Costello, A.A., Jahan, I., Zhang, L.: Towards constructing one-bit binary adder in excitable chemical medium. Chem. Phys. 381(1), 88–99 (2011)

    Article  Google Scholar 

  92. Sun, M.-Z., Zhao, X.: Multi-bit binary decoder based on Belousov-Zhabotinsky reaction. J. Chem. Phys. 138(11), 114106 (2013)

    Article  Google Scholar 

  93. Zhang, G.-M., Wong, I., Chou, M.-T., Zhao, X.: Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction. J. Chem. Phys. 136(16), 164108 (2012)

    Article  Google Scholar 

  94. Sun, M.-Z., Zhao, X.: Crossover structures for logical computations in excitable chemical medium. Int. J. Unconv. Comput. (2015)

    Google Scholar 

  95. Guo, S., Sun, M.-Z., Han, X.: Digital comparator in excitable chemical media. Int. J. Unconv. Comput. (2015)

    Google Scholar 

  96. Gorecka, J., Gorecki, J.: T-shaped coincidence detector as a band filter of chemical signal frequency. Phys. Rev. E 67(6), 067203 (2003)

    Article  Google Scholar 

  97. Igarashi, Y., Gorecki, J., Gorecka, J.N.: Chemical information processing devices constructed using a nonlinear medium with controlled excitability. Unconv. Comput. 130–138. Springer (2006)

    Google Scholar 

  98. Adamatzky, A., de Lacy Costello, B., Bull, L.: On polymorphic logical gates in subexcitable chemical medium. Int. J. Bifur. Chaos 21(07), 1977–1986 (2011)

    Google Scholar 

  99. Stevens, W.M., Adamatzky, A., Jahan, I., de Lacy Costello, B.: Time-dependent wave selection for information processing in excitable media. Phys. Rev. E 85(6), 066129 (2012)

    Google Scholar 

  100. Cole, L., Orlovich, D.A., Ashford, A.E.: Structure, function, and motility of vacuoles in filamentous fungi. Fungal Gen. Biol. 24(1–2), 86–100 (1998)

    Google Scholar 

  101. Goldstein, R.E., Tuval, I., van de Meent, J.-W.: Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Nat. Acad. Sci. 105(10), 3663–3667 (2008)

    Google Scholar 

  102. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)

    Article  Google Scholar 

  103. Bahn, Y.-S., Xue, C., Idnurm, A., Rutherford, J.C., Heitman, J., Cardenas, M.E.: Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5(1), 57 (2007)

    Google Scholar 

  104. Whiting, J.G.H., Jones, J., Bull, L., Levin, M., Adamatzky, A.: Towards a Physarum learning chip. Sci. Rep. 6:19948 (2016)

    Google Scholar 

  105. Trinci, A.P.J.: A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. Microbiology 81(1), 225–236 (1974)

    Article  Google Scholar 

  106. Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. Plant Cell Environ. 30(3), 249–257 (2007)

    Article  Google Scholar 

  107. Van Aarle, I.M., Olsson, P.A., Söderström, B.: Arbuscular mycorrhizal fungi respond to the substrate ph of their extraradical mycelium by altered growth and root colonization. New Phytologist 155(1), 173–182 (2002)

    Google Scholar 

  108. Kung, C.: A possible unifying principle for mechanosensation. Nature 436(7051), 647 (2005)

    Article  Google Scholar 

  109. Fomina, M., Ritz, K., Gadd, G.M.: Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193(2), 207–211 (2000)

    Google Scholar 

  110. Bahn, Y.-S., Mühlschlegel, F.A.: Co2 sensing in fungi and beyond. Curr. opin. Microbiol. 9(6), 572–578 (2006)

    Google Scholar 

  111. Ki-Bong, O., Nishiyama, T., Sakai, E., Matsuoka, H., Kurata, H.: Flow sensing in mycelial fungi. J. Biotechnol. 58(3), 197–204 (1997)

    Article  Google Scholar 

  112. Jaffe, M.J., Leopold, A.C., Staples, R.C.: Thigmo responses in plants and fungi. Am. J. Botany 89(3), 375–382 (2002)

    Google Scholar 

  113. Howitz, K.T., Sinclair, D.A.: Xenohormesis: sensing the chemical cues of other species. Cell 133(3), 387–391 (2008)

    Google Scholar 

  114. Rundel, P.W., Graham, E.A., Allen, M.F., Fisher, J.C., Harmon, T.C.: Environmental sensor networks in ecological research. New Phytologist 182(3), 589–607 (2009)

    Google Scholar 

  115. Schloter, M., Nannipieri, P., Sørensen, S.J., van Elsas, J.D.: Microbial indicators for soil quality. Biol. Fertil. Soils 54(1), 1–10 (2018)

    Google Scholar 

  116. Vogt, K.A., Publicover, D.A., Bloomfield, J., Perez, J.M., Vogt, D.J., Silver, W.L.: Belowground responses as indicators of environmental change. Environ. Exp. Botany 33(1), 189–205 (1993)

    Google Scholar 

  117. Whiting, J.G.H., de Lacy Costello, B.P.J., Adamatzky, A.: Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124, 21–25 (2014)

    Google Scholar 

  118. Borresen, J., Lynch, S.: Oscillatory threshold logic. PloS One 7(11), e48498 (2012)

    Article  Google Scholar 

  119. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern Recogn. 12(4), 261–268 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A. (2023). Towards Fungal Computer. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_17

Download citation

Publish with us

Policies and ethics