Skip to main content

Fungal Automata

  • Chapter
  • First Online:
Fungal Machines

Abstract

We study a cellular automaton (CA) model of information dynamics on a single hypha of a fungal mycelium. Such a filament is divided in compartments (here also called cells) by septa. These septa are invaginations of the cell wall and their pores allow for flow of cytoplasm between compartments and hyphae. The septal pores of the fungal phylum of the Ascomycota can be closed by organelles called Woronin bodies. Septal closure is increased when the septa become older and when exposed to stress conditions. Thus, Woronin bodies act as informational flow valves. The one dimensional fungal automata is a binary state ternary neighbourhood CA, where every compartment follows one of the elementary cellular automata (ECA) rules if its pores are open and either remains in state ‘0’ (first species of fungal automata) or its previous state (second species of fungal automata) if its pores are closed. The Woronin bodies closing the pores are also governed by ECA rules. We analyse a structure of the composition space of cell-state transition and pore-state transitions rules, complexity of fungal automata with just few Woronin bodies, and exemplify several important local events in the automaton dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://figshare.com/s/b7750ee3fe6df7cbe228.

References

  1. Carlile, M.J., Watkinson, S.C., Gooday, G.W.: The Fungi. Gulf Professional Publishing (2001)

    Google Scholar 

  2. Griffin, D.M., et al.: Ecology of soil fungi. Ecol. Soil Fungi. (1972)

    Google Scholar 

  3. Cooke, R.C., Rayner, A.D.M., et al.: Ecology of Saprotrophic Fungi. Longman (1984)

    Google Scholar 

  4. Rayner, A.D.M., Boddy, L., et al.: Fungal Decomposition of Wood. Its Biology and Ecology. John Wiley & Sons Ltd. (1988)

    Google Scholar 

  5. Christensen, M.: A view of fungal ecology. Mycol. 81(1), 1–19 (1989)

    Article  MathSciNet  Google Scholar 

  6. Smith, M.L., Bruhn, J.N., Anderson, J.B.: The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nat. 356(6368), 428 (1992)

    Google Scholar 

  7. Dai, Y.-C., Cui, B.-K.: Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal biology 115(9), 813–814 (2011)

    Article  Google Scholar 

  8. Bonfante, P., Anca, I.-A.: Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63, 363–383 (2009)

    Article  Google Scholar 

  9. Held, M., Edwards, C., Nicolau, D.V.: Fungal intelligence; or on the behaviour of microorganisms in confined micro-environments. J. Phys. Conf. Ser. 178, 012005. IOP Publishing (2009)

    Google Scholar 

  10. Held, M., Edwards, C., Nicolau, D.V.: Examining the behaviour of fungal cells in microconfined mazelike structures. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, vol. 6859, p. 68590U. International Society for Optics and Photonics (2008)

    Google Scholar 

  11. Slayman, C.L., Long, W.S., Gradmann, D.: “Action potentials” in Neurospora crassa, a mycelial fungus. Biochimica et Biophysica Acta (BBA)—Biomembranes 426(4), 732–744 (1976)

    Google Scholar 

  12. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  13. Adamatzky, A.: On spiking behaviour of oyster fungi Pleurotus djamor. Sci. Rep. 7873 (2018)

    Google Scholar 

  14. Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis, G. (eds.) From parallel to emergent computing. CRC Group/Taylor & Francis (2019)

    Google Scholar 

  15. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On Boolean gates in fungal colony. Biosyst. 193, 104138 (2020)

    Google Scholar 

  16. Beasley, A.E., Powell, A.L., Adamatzky, A.: Memristive properties of mushrooms (2020). arXiv:2002.06413

  17. Moore, R.T., McAlear, J.H.: Fine structure of Mycota. 7. observations on septa of ascomycetes and basidiomycetes. Am. J. Bot. 49(1), 86–94 (1962)

    Google Scholar 

  18. Lew, R.R.: Mass flow and pressure-driven hyphal extension in Neurospora crassa. Microbiol.151(8), 2685–2692 (2005)

    Google Scholar 

  19. Trinci, A.P.J., Collinge, A.J.: Occlusion of the septal pores of damaged hyphae ofNeurospora crassa by hexagonal crystals. Protoplasma. 80(1–3), 57–67 (1974)

    Google Scholar 

  20. Collinge, A.J., Markham, P.: Woronin bodies rapidly plug septal pores of severedpenicillium chrysogenum hyphae. Exp. Mycol. 9(1), 80–85 (1985)

    Google Scholar 

  21. Jedd, G., Chua, N.-H.: A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat. Cell Biol. 2(4), 226–231 (2000)

    Article  Google Scholar 

  22. Tenney, K., Hunt, I., Sweigard, J., Pounder, J.I., McClain, C., Bowman, E.J., Bowman, B.J.: Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet. Biol. 31(3), 205–217 (2000)

    Google Scholar 

  23. Soundararajan, S., Jedd, G., Li, X., Ramos-Pamploña, M., Chua, N.H., Naqvi,N.I.: Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell. 16(6), 1564–1574 (2004)

    Google Scholar 

  24. Maruyama, J.-I., Juvvadi, P.R., Ishi, K., Kitamoto, K.: Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus aspergillus oryzae. Biochem. Biophys. Res. Commun. 331(4), 1081–1088 (2005)

    Google Scholar 

  25. Bleichrodt, R.-J., van Veluw, G.J., Recter, B., Maruyama, J.-I., Kitamoto, K., Wösten, H.A.B.: Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol. Microbiol. 86(6), 1334–1344 (2012)

    Google Scholar 

  26. Bleichrodt, R.-J., Hulsman, M., Wösten, H.A.B., Reinders, M.J.T.: Switching from a unicellular to multicellular organization in an Aspergillus niger hypha. MBio. 6(2), e00111–15 (2015)

    Google Scholar 

  27. Steinberg, G., Harmer, N.J., Schuster, M., Kilaru, S.: Woronin body-based sealing of septal pores. Fungal Genet. Biol. 109, 53–55 (2017)

    Google Scholar 

  28. Tegelaar, M., Bleichrodt, R.-J., Nitsche, B., Ram, A.F.J., Wösten, H.A.B.: Subpopulations of hyphae secrete proteins or resist heat stress in Aspergillus oryzae colonies. Environ. Microbiol. 22(1), 447–455 (2020)

    Google Scholar 

  29. Momany, M., Richardson, E.A., Van Sickle, C., Jedd, G.: Mapping Woronin body position in Aspergillus nidulans. Mycol. 94(2), 260–266 (2002)

    Google Scholar 

  30. Tey, W.K., North, A.J., Reyes, J.L., Lu, Y.F., Jedd, G.: Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol. Biol. Cell 16(6), 2651–2659 (2005)

    Google Scholar 

  31. Beck, J., Ebel, F.: Characterization of the major Woronin body protein HexA of the human pathogenic mold Aspergillus fumigatus. Int. J. Med. Microbiol. 303(2), 90–97 (2013)

    Article  Google Scholar 

  32. Ng, S.K., Liu, F., Lai, J., Low, W., Jedd, G.: A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet. 5(6), (2009)

    Google Scholar 

  33. Wergin, W.P.: Development of Woronin bodies from microbodies infusarium oxysporum f. sp. lycopersici. Protoplasma. 76(2), 249–260 (1973)

    Google Scholar 

  34. Leonhardt, Y., Kakoschke, S.C., Wagener, J., Ebel, F.: Lah is a transmembrane protein and requires spa10 for stable positioning of Woronin bodies at the septal pore of Aspergillus fumigatus. Sci. Rep. 7, 44179 (2017)

    Google Scholar 

  35. Berns, M.W., Aist, J.R., Wright, W.H., Liang, H.: Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser. Exp. Cell Res. 198(2), 375–378 (1992)

    Google Scholar 

  36. Bleichrodt, R.-J., Vinck, A., Read, N.D., Wösten, H.A.B.: Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger. Fungal Genet. Biol. 82, 193–200 (2015)

    Google Scholar 

  37. Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley Pub. Co. (1994)

    Google Scholar 

  38. Lindgren, K., Nordahl, M.G.: Universal computation in simple one-dimensional cellular automata. Complex Syst. 4(3), 299–318 (1990)

    MathSciNet  MATH  Google Scholar 

  39. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: International Colloquium on Automata, Languages, and Programming, pp. 132–143. Springer (2006)

    Google Scholar 

  41. Wolfram, S.: Universality and complexity in cellular automata. Phys. D Nonlinear Phenom. 10(1–2), 1–35 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Martínez, G.J., McIntosh, H.V., Mora, J.C.S.-T.: Production of gliders by collisions in rule 110. In: European Conference on Artificial Life, pp. 175–182. Springer (2003)

    Google Scholar 

  43. Martínez, G.J., McIntosh, H.V., Mora, J.C.S.-T.: Gliders in rule 110. Int. J. Unconv. Comput. 2(1), 1 (2006)

    Google Scholar 

  44. Martínez, G.J., Mora, J.C.S.-T., Vergara, S.V.C.: Rule 110 objects and other collision-based constructions. J. Cell. Autom. 2, 219–242 (2007)

    Google Scholar 

  45. Roelofs, G., Koman, R.: PNG: the Definitive Guide. O’Reilly & Associates, Inc. (1999)

    Google Scholar 

  46. Howard, P.G.: The design and analysis of efficient lossless data compression systems. Ph.D. thesis, CiteSeer (1993)

    Google Scholar 

  47. Deutsch, P., Gailly, J.: Zlib compressed data format specification version 3.3. Technical report, RFC 1950, May (1996)

    Google Scholar 

  48. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory. 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A., Goles, E., Martínez, G.J., Tsompanas, MA., Tegelaar, M., Wosten, H.A.B. (2023). Fungal Automata. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_22

Download citation

Publish with us

Policies and ethics