Abstract
Hyphae within the mycelia of the ascomycetous fungi are compartmentalised by septa. Each septum has a pore that allows for inter-compartmental and inter-hyphal streaming of cytosol and even organelles. The compartments, however, have special organelles, Woronin bodies, that can plug the pores. When the pores are blocked, no flow of cytoplasm takes place. Inspired by the controllable compartmentalisation within the mycelium of the ascomycetous fungi we designed two-dimensional fungal automata. A fungal automaton is a cellular automaton where communication between neighbouring cells can be blocked on demand. We demonstrate computational universality of the fungal automata by implementing sandpile cellular automata circuits there. We reduce the Monotone Circuit Value Problem to the Fungal Automaton Prediction Problem. We construct families of wires, cross-overs and gates to prove that the fungal automata are P-complete.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smith, M.L., Bruhn, J.N., Anderson, J.B.: The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nat. 356(6368), 428 (1992)
Ferguson, B.A., Dreisbach, T.A., Parks, C.G., Filip, G.M., Schmitt, C.L.: Coarse-scale population structure of pathogenic armillaria species in a mixed-conifer forest in the blue mountains of northeast Oregon. Can. J. For. Res. 33(4), 612–623 (2003)
Jaffe, M.J., Leopold, A.C., Staples, R.C.: Thigmo responses in plants and fungi. Am. J. Bot. 89(3), 375–382 (2002)
Kung, C.: A possible unifying principle for mechanosensation. Nat. 436(7051), 647 (2005)
Van Aarle, I.M., Olsson, P.A., Söderström, B.: Arbuscular mycorrhizal fungi respond to the substrate ph of their extraradical mycelium by altered growth and root colonization. New Phytol. 155(1), 173–182 (2002)
Fomina, M., Ritz, K., Gadd G.M.: Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193(2), 207–211 (2000)
Howitz, K.T., Sinclair, D.A.: Xenohormesis: sensing the chemical cues of other species. Cell. 133(3), 387–391 (2008)
Purschwitz, J., Müller, S., Kastner, C., Fischer, R.: Seeing the rainbow: light sensing in fungi. Curr. Opin. Microbiol. 9(6), 566–571 (2006)
Moore, D.: Perception and response to gravity in higher fungi-a critical appraisal. New Phytol. 117(1), 3–23 (1991)
Slayman, C.L., Long, W.S., Gradmann, D.: “Action potentials” in Neurospora crassa, a mycelial fungus. Biochimica et Biophysica Acta (BBA)—Biomembranes. 426(4), 732–744 (1976)
Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)
Adamatzky, A.: On spiking behaviour of oyster fungi Pleurotus djamor. Sci. Rep. 7873 (2018)
Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis, G. (eds.) From Parallel to Emergent Computing. CRC Group/Taylor & Francis (2019)
Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On Boolean gates in fungal colony. Biosyst. 193, 104138 (2020)
Adamatzky, A., Goles, E., Martinez, G., Tsompanas, M.-A., Tegelaar, M., Wosten, H.A.B.: Fungal automata (2020). arXiv:2003.08168
Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64(14), 1613 (1990)
Goles, E.: Sand pile automata. In Annales de l’IHP Physique théorique 56, 75–90 (1992)
Christensen, K., Fogedby, H.C., Jensen, H.J.: Dynamical and spatial aspects of sandpile cellular automata. J. Stat. Phys. 63(3–4), 653–684 (1991)
Bitar, J., Goles, E.: Parallel chip firing games on graphs. Theor. Comput. Sci. 92(2), 291–300 (1992)
Goles, E.: Sand piles, combinatorial games and cellular automata. In: Instabilities and Nonequilibrium Structures III, pp. 101–121. Springer (1991)
Moore, R.T., McAlear, J.H.: Fine structure of Mycota. 7. observations on septa of ascomycetes and basidiomycetes. Am. J. Bot. 49(1), 86–94 (1962)
Lew, R.R.: Mass flow and pressure-driven hyphal extension in neurospora crassa. Microbiol. 151(8), 2685–2692 (2005)
Bleichrodt, R.-J., van Veluw, G.J., Recter, B., Maruyama, J.-I., Kitamoto, K., Wösten, H.A.B.: Hyphal heterogeneity in a spergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol. Microbiol. 86(6), 1334–1344 (2012)
Bleichrodt, R.-J., Hulsman, M., Wösten, H.A.B., Reinders, M.J.T.: Switching from a unicellular to multicellular organization in an aspergillus niger hypha. MBio. 6(2), e00111–15 (2015)
Tegelaar, M., Bleichrodt, R.-J., Nitsche, B., Ram, A.F.J., Wösten, H.A.B.: Subpopulations of hyphae secrete proteins or resist heat stress in aspergillus oryzae colonies. Environ. Microbiol. 22(1), 447–455 (2020)
Goles, E., Margenstern, M.: Sand pile as a universal computer. Int. J. Mod. Phys. C 7(02), 113–122 (1996)
Goles, E., Margenstern, M.: Universality of the chip-firing game. Theor. Comput. Sci. 172(1–2), 121–134 (1997)
Chessa, A., Stanley, H.E., Vespignani, A., Zapperi, S.: Universality in sandpiles. Phys. Rev. E. 59(1), R12 (1999)
Moore, C., Nilsson, M.: The computational complexity of sandpiles. J. Stat. Phys. 96(1–2), 205–224 (1999)
Gajardo, A., Goles, E.: Crossing information in two-dimensional sandpiles. Theor. Comput. Sci. 369(1–3), 463–469 (2006)
Martin, B.: On Goles’ universal machines: a computational point of view. Theor. Comput. Sci. 504, 83–88 (2013)
Tenney, K., Hunt, I., Sweigard, J., Pounder, J.I., McClain, C., Bowman, E.J., Bowman, B.J.: Hex-1, a gene unique to filamentous fungi, encodes the major protein of the Woronin body and functions as a plug for septal pores. Fungal Genet. Biol. 31(3), 205–217 (2000)
Reichle, R.E., Alexander, J.V.: Multiperforate septations, Woronin bodies, and septal plugs in fusarium. J. Cell Biol. 24(3), 489 (1965)
Tey, W.K., North, A.J., Reyes, J.L., Lu, Y.F., Jedd, G.: Polarized gene expression determines Woronin body formation at the leading edge of the fungal colony. Mol. Biol. Cell. 16(6), 2651–2659 (2005)
Jedd, G., Chua, N.-H.: A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat. Cell Biol. 2(4), 226–231 (2000)
Steinberg, G., Harmer, N.J., Schuster, M., Kilaru, S.: Woronin body-based sealing of septal pores. Fungal Genet. Biol. 109, 53–55 (2017)
Bleichrodt, R.-J., Vinck, A., Read, N.D., Wösten, H.A.B.: Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of aspergillus niger. Fungal Genet. Biol. 82, 193–200 (2015)
Wolfram, S.: Cellular Automata and Complexity: Collected Papers. Addison-Wesley Pub. Co. (1994)
Goles, E., Margenstern, M.: Universality of the chip-firing game. Theor. Comput. Sci. 172(1–2), 121–134 (1997)
Moore, C., Nilsson, M.: The computational complexity of sandpiles. J. Stat. Phys. 96(1–2), 205–224 (1999)
Greenlaw, R., Hoover, H.J., Ruzzo, W.L., et al.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press on Demand (1995)
Margolus, N.: Physics-like models of computation. Phys. D Nonlinear Phenom. 10(1), 81–95 (1984)
Margolus, N.: Universal cellular automata based on the collisions of soft spheres. In: Adamatzky, A (ed.) Collision-Based Computing, pp. 107–134. Springer (2002)
Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cellular automata. IEICE Trans. (1976–1990), 72(6), 758–762 (1989)
Durand-Lose, J.O.: Reversible space–time simulation of cellular automata. Theor. Comput. Sci. 246(1–2), 117–129 (2000)
Imai, K., Morita, K.: A computation-universal two-dimensional 8-state triangular reversible cellular automaton. Theor. Comput. Sci. 231(2), 181–191 (2000)
Durand-Lose, J.: Representing reversible cellular automata with reversible block cellular automata. Discret. Math. Theor. Comput. Sci. 145, 154 (2001)
Tegelaar, M., Wösten, H.A.B.: Functional distinction of hyphal compartments. Sci. Rep. 7(1), 1–6 (2017)
Soundararajan, S., Jedd, G., Li, X., Ramos-Pamploña, M., Chua, N.H., Naqvi, N.I.: Woronin body function in magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell. 16(6), 1564–1574 (2004)
Jedd, G.: Fungal evo-devo: organelles and multicellular complexity. Trends Cell Biol. 21(1), 12–19 (2011)
Acknowledgements
AA, MT, HABW have received funding from the European Union’s Horizon 2020 research and innovation programme FET OPEN “Challenging current thinking” under grant agreement No 858132. EG residency in UWE has been supported by funding from the Leverhulme Trust under the Visiting Research Professorship grant VP2-2018-001 and from the project the project 1200006, FONDECYT-Chile.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Goles, E., Tsompanas, MA., Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Martínez, G.J. (2023). Computational Universality of Fungal Sandpile Automata. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-38336-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38335-9
Online ISBN: 978-3-031-38336-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)