Skip to main content

Fungal Minds

  • Chapter
  • First Online:
Fungal Machines

Abstract

Fungal organisms can perceive the outer world in a way similar to what animals sense. Does that mean that they have full awareness of their environment and themselves? Is a fungus a conscious entity? In laboratory experiments we found that fungi produce patterns of electrical activity, similar to neurons. There are low and high frequency oscillations and convoys of spike trains. The neural-like electrical activity is yet another manifestation of the fungal intelligence. We discuss fungal cognitive capabilities and intelligence in evolutionary perspective, and question whether fungi are conscious and what does fungal consciousness mean, considering their exhibiting of complex behaviours, a wide spectrum of sensory abilities, learning, memory and decision making. We overview experimental evidences of consciousness found in fungi. Our conclusions allow us to give a positive answer to the important research questions of fungal cognition, intelligence and forms of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trewavas, A.: The foundations of plant intelligence. Interface Focus. 7, 6 (2017)

    Google Scholar 

  2. Calvo, P., Gagliano, M., Souza, G.M., Trewavas, A.: Plants are intelligent, here’s how. Ann. Bot. 125(1), 11–28 (2020)

    Article  Google Scholar 

  3. Westerhoff, H.V., Brooks, A.N., Simeonidis, E., García-Contreras, R., He, F., Boogerd, F.C., Jackson, V.J., Goncharuk, V., Kolodkin, A.: Macromolecular networks and intelligence in microorganisms. Front. Microbiol. 5, 379 (2014)

    Google Scholar 

  4. Money, N.P.: Hyphal and mycelial consciousness: the concept of the fungal mind. Fungal Biol. 125(4), 257–259 (2021)

    Google Scholar 

  5. Levin, M.: The computational boundary of a ‘self’: developmental bioelectricity drives multicellularity and scale-free cognition. Front. Psychol. 10, 2688 (2019)

    Google Scholar 

  6. Levin, M.: Life, death, and self: fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochem. Biophys. Res. Commun. (2020) (in press)

    Google Scholar 

  7. Levin, M., Keijzer, F., Lyon, P., Arendt, D.: Uncovering cognitive similarities and differences, conservation and innovation. Phil. Trans. R. Soc. B. 376, 20200458 (2021)

    Google Scholar 

  8. Lyon, P.: The biogenic approach to cognition. Cogn. Process. 7, 11–29 (2005)

    Article  Google Scholar 

  9. Lyon, P.: The cognitive cell: Bacterial behaviour reconsidered. Front. Microbiol. 6, 264 (2015)

    Google Scholar 

  10. Ben-Jacob, E.: Bacterial wisdom, gödels theorem and creative genomic webs. Phys. A. 248, 57–76 (1998)

    Article  Google Scholar 

  11. Baluska, F., Mancuso, S.: Microorganism and filamentous fungi drive evolution of plant synapses. Front. Cell. Infect. Microbiol. 3, 44 (2013)

    Google Scholar 

  12. Wang, D.Y.-C., Kumar, S., Hedges, S.B.: Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc. R. Soc. Lond. Ser. B Biol. Sci. 266(1415), 163–171 (1999)

    Google Scholar 

  13. Brundrett, M.C.: Coevolution of roots and mycorrhizas of land plants (2002)

    Google Scholar 

  14. Schmitt, C.L., Tatum, M.L.: The malheur national forest: Location of the world’s largest living organism (the Humongous Fungus). United States Department of Agriculture, Forest Service, Pacific Northwest (2008)

    Google Scholar 

  15. Ferguson, B.A., Dreisbach, T.A., Parks, C.G., Filip, G.M., Schmitt, C.L.: Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can. J. For. Res. 33, 612–623 (2003)

    Google Scholar 

  16. Hawksworth, D.L., Lücking, R.: Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 5(4) (2017)

    Google Scholar 

  17. de Mattos-Shipley, K.M.J., Ford, K.L., Alberti, F., Banks, A.M., Bailey, A.M., Foster, G.D.: The good, the bad and the tasty: the many roles of mushrooms. Stud. Mycol. 85, 125–157 (2016)

    Google Scholar 

  18. Yao, Y.-J., Wang, X.-L.: Host insect species of Ophiocordyceps sinensis: a review

    Google Scholar 

  19. Hazen, M.L., Loreto, R.G., Mangold, C.A., Chen, D.Z., Fredericksen, M.A., Zhang, Y., Hughes, D.P.: Three-dimensional visualization and a deep-learning model reveal complex fungal parasite networks in behaviorally manipulated ants

    Google Scholar 

  20. Moore, D.: Fungal Biology in the Origin and Emergence of Life. Cambridge University Press (2013)

    Google Scholar 

  21. Lewicki, M.S.: A review of methods for spike sorting: the detection and classification of neural action potentials. Netw. Comput. Neural Syst. 9(4), R53 (1998)

    Google Scholar 

  22. Baslow, M.H.: The languages of neurons: an analysis of coding mechanisms by which neurons communicate, learn and store information. Entropy. 11(4), 782–797 (2009)

    Google Scholar 

  23. Pruszynski, J.A., Zylberberg, J.: The language of the brain: real-world neural population codes. Curr. Opin. Neurobiol. 58, 30–36 (2019)

    Google Scholar 

  24. Slayman, C.L., Long, W.S., Gradmann, D.: “Action potentials” in Neurospora crassa, a mycelial fungus. Biochimica et Biophysica Acta (BBA)—Biomembranes. 426(4), 732–744 (1976)

    Google Scholar 

  25. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  26. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  27. Adamatzky, A., Gandia, A.: On electrical spiking of ganoderma resinaceum. Biophys. Rev. Lett. 1–9 (2021)

    Google Scholar 

  28. Cocatre-Zilgien, J.H., Delcomyn, F.: Identification of bursts in spike trains. J. Neurosci. Methods. 41(1), 19–30 (1992)

    Article  Google Scholar 

  29. Legendy, C.R., Salcman, M.: Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol. 53(4), 926–939 (1985)

    Article  Google Scholar 

  30. Adamatzky, A., Gandia, A., Chiolerio, A.: Fungal sensing skin. Fungal Biol. Biotechnol. 8(1), 1–6 (2021)

    Google Scholar 

  31. Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Dehshibi, M.M.: Reactive fungal wearable. Biosyst. 199, 104304 (2021)

    Google Scholar 

  32. Berbara, R.L.L., Morris, B.M., Fonseca, H.M.A.C., Reid, B., Gow, N.A.R., Daft, M.J.: Electrical currents associated with arbuscular mycorrhizal interactions. New Phytol. 129(3), 433–438 (1995)

    Article  Google Scholar 

  33. Dehshibi, M.M., Adamatzky, A.: Electrical activity of fungi: spikes detection and complexity analysis. Biosyst. 203, 104373 (2021)

    Google Scholar 

  34. Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today. 17(2), 86–91 (2014)

    Article  Google Scholar 

  35. Chiolerio, A., Adamatzky, A.: Acetobacter biofilm: electronic characterization and reactive transduction of pressure. ACS Biomater. Sci. Eng. 7, 1651–1662 (2021)

    Article  Google Scholar 

  36. Adamatzky, A.: Language of fungi derived from electrical spiking activity (2021). arXiv:2112.09907

  37. Miu, P., Puil, E.: Isoflurane-induced impairment of synaptic transmission in hippocampal neurons. Exp. Brain Res. 75(2), 354–360 (1989)

    Article  Google Scholar 

  38. Hentschke, H., Schwarz, C., Antkowiak, B.: Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor-mediated inhibition. Eur. J. Neurosci. 21(1), 93–102 (2005)

    Article  Google Scholar 

  39. Hutt, A., Lefebvre, J., Hight, D., Sleigh, J.: Suppression of underlying neuronal fluctuations mediates EEG slowing during general anaesthesia. Neuroimage. 179, 414–428 (2018)

    Article  Google Scholar 

  40. Sleigh, J.W., Steyn-Ross, D.A., Steyn-Ross, M.L., Grant, C., Ludbrook, G.: Cortical entropy changes with general anaesthesia: theory and experiment. Physiol. Meas. 25(4), 921 (2004)

    Google Scholar 

  41. Adamatzky, A., Gandia, A.: Fungi anaesthesia. Sci. Rep. 12(1), 1–8 (2022)

    Google Scholar 

  42. Trewavas, A.: Plant Behaviour and Intelligence. OUP Oxford (2014)

    Google Scholar 

  43. Margulis, L., Asikainen, C.A., Krumbein, W.E.: Chimeras and Consciousness: Evolution of the Sensory Self. MIT Cambridge (2011)

    Google Scholar 

  44. Margulis, L.: The conscious cell. Ann. N. Y. Acad. Sci. 929(1), 55–70 (2001)

    Article  Google Scholar 

  45. Stamets, P.: Mycelium Running: how Mushrooms can Help Save the World. Random House Digital, Inc. (2005)

    Google Scholar 

  46. Callow, J.A.: Advances in Botanical Research, vol. 22. Elsevier (1999)

    Google Scholar 

  47. Bastiaans, E., Debets, A.J.M., Aanen, D.K.: Experimental evolution reveals that high relatedness protects multicellular cooperation from cheaters. Nat. Commun. 7(1), 1–10 (2016)

    Google Scholar 

  48. Scheckhuber, C.Q., Hamann, A., Brust, D., Osiewacz, H.D.: Cellular homeostasis in fungi: impact on the aging process. In: Aging Research in Yeast, pp. 233–250. Springer (2011)

    Google Scholar 

  49. Czaran, T., Hoekstra, R.F., Aanen, D.K.: Selection against somatic parasitism can maintain allorecognition in fungi. Fungal Genet. Biol. 73, 128–137 (2014)

    Google Scholar 

  50. Paoletti, M., Saupe, S.J., Clavé, C.: Genesis of a fungal non-self recognition repertoire. PLoS one. 2(3), e283 (2007)

    Google Scholar 

  51. Cvrcková, F., Lipavská, H., Žárský, V.: Plant intelligence why, why not or where?. Plant Signal. Behav. 4(5), 394–399 (2009)

    Google Scholar 

  52. Fukasawa, Y., Savoury, M., Boddy, L.: Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 14(2), 380–388 (2020)

    Google Scholar 

  53. Harley, J.L., Waid, J.S.: A method of studying active mycelia on living roots and other surfaces in the soil. Trans. Br. Mycol. Soc. 38(2), 104–118 (1955)

    Article  Google Scholar 

  54. Trewavas, A.J., Baluška, F.: The ubiquity of consciousness. EMBO Rep. 12(12), 1221–1225 (2011)

    Google Scholar 

  55. Mailänder-Sánchez, D., Braunsdorf, C., Schaller, M.: Fungal sensing of host environment

    Google Scholar 

  56. Monshausen, G.B., Haswell, E.S.: A force of nature: molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64(15), 4663–4680 (2013)

    Google Scholar 

  57. Liu, S., Hou, Y., Liu, W., Lu, C., W., Wang, C., Sun, S.: Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryot. Cell. EC–00271 (2015)

    Google Scholar 

  58. Qilin, Yu., Wang, F., Zhao, Q., Chen, J., Ding, X., Wang, H., Yang, B., Guangqing, L., Zhang, B., Zhang, B., et al.: A novel role of the vacuolar calcium channel yvc1 in stress response, morphogenesis and pathogenicity of candida albicans. Int. J. Med. Microbiol. 304(3–4), 339–350 (2014)

    Google Scholar 

  59. Muller, E.M., Mackin, N.A., Erdman, S.E., Cunningham, K.W.: Fig1p facilitates ca2+ influx and cell fusion during mating of saccharomyces cerevisiae. J. Biol. Chem. (2003)

    Google Scholar 

  60. Lew, R.R., Abbas, Z., Anderca, M.I., Free, S.J.: Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, neurospora crassa. Eukaryot. Cell. 7(4), 647–655 (2008)

    Google Scholar 

  61. Abbracchio, M.P., Burnstock, G., Verkhratsky, A., Zimmermann, H.: Purinergic signalling in the nervous system: an overview. Trends Neurosci. 32(1), 19–29 (2009)

    Google Scholar 

  62. Hanson, K.L., Nicolau Jr, D.V., Filipponi, L., Wang, L., Lee, A.P., Nicolau, D.V.: Fungi use efficient algorithms for the exploration of microfluidic networks. Small. 2(10), 1212–1220 (2006)

    Google Scholar 

  63. Thomson, D.D., Wehmeier, S., Byfield, F.J., Janmey, P.A., Caballero-Lima, D., Crossley, A., Brand, A.C.: Contact-induced apical asymmetry drives the thigmotropic responses of candida albicans hyphae. Cell. Microbiol. 17(3), 342–354 (2015)

    Google Scholar 

  64. Andrade-Linares, D.R., Veresoglou, S.D., Rillig, M.C.: Temperature priming and memory in soil filamentous fungi. Fungal Ecol. 21, 10–15 (2016)

    Google Scholar 

  65. Ortega, J.K.E., Gamow, R.I.: Phycomyces: habituation of the light growth response. Sci. 168(3937), 1374–1375 (1970)

    Google Scholar 

  66. Veses, V., Richards, A., Gow, N.A.R.: Vacuoles and fungal biology. Curr. Opin. Microbiol. 11(6), 503–510 (2008)

    Google Scholar 

  67. Young, G.: Fungal communication gets volatile. Nat. Rev. Microbiol. 7(1), 6–6 (2009)

    Article  Google Scholar 

  68. Carlile, M.J.: The photobiology of fungi. Annu. Rev. Plant Physiol. 16(1), 175–202 (1965)

    Article  Google Scholar 

  69. Lipson, E.D.: Phototropism in fungi. In: Biophysics of Photoreceptors and Photomovements in Microorganisms, pp. 311–325 (1991)

    Google Scholar 

  70. Page, R.M.: Phototropism in fungi. In: Photophysiology: Current Topics, p. 65, (2013)

    Google Scholar 

  71. Zhenzhong, Yu., Fischer, R.: Light sensing and responses in fungi. Nat. Rev. Microbiol. 17(1), 25–36 (2019)

    Article  Google Scholar 

  72. Moore, D.: Perception and response to gravity in higher fungi—a critical appraisal. New Phytol. 117, 3–23 (1991)

    Article  Google Scholar 

  73. Corrochano, L.M., Galland, P.: Photomorphogenesis and gravitropism in fungi. In: Growth, Differentiation and Sexuality, pp. 233–259. Springer (2006)

    Google Scholar 

  74. Boddy, L., Jones, T.H.: Mycelial responses in heterogeneous environments: parallels with macroorganisms. In: Fungi in the Environment, vol. 1, pp. 112–140 (2007)

    Google Scholar 

  75. Fomina, M., Ritz, K., Gadd, G.M.: Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193(12), 207–211 (2000)

    Google Scholar 

  76. Kües, U., Khonsuntia, W., Subba, S., Dörnte, B.: Volatiles in communication of agaricomycetes. In: Physiology and Genetics, pp. 149–212 (2018)

    Google Scholar 

  77. Barriuso, J., Hogan, D.A., Keshavarz, T., Jesús, M., Martínez, J.J.: Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol. Rev. 22, 627–638 (2018)

    Google Scholar 

  78. Khalid, S., Keller, N.P.: Chemical signals driving bacterial-fungal interactions (2021)

    Google Scholar 

  79. Perera, T.H.S., Gregory, D.W., Marshall, D., Gow, N.A.R.: Contact-sensing by hyphae of dermatophytic and saprophytic fungi. J. Med. Vet. Mycol. 35(4), 289–293 (1997)

    Article  Google Scholar 

  80. Brand, A., Gow, N.A.R.: Mechanisms of hypha orientation of fungi. Curr. Opin. Microbiol. 12(4), 350–357 (2009)

    Article  Google Scholar 

  81. Almeida, M.C., Brand, A.C.: Thigmo responses: the fungal sense of touch. Microbiol. Spectr. 5(2), 5–2 (2017)

    Google Scholar 

  82. Adamatzky, A., Gandia, A.: Living mycelium composites discern weights via patterns of electrical activity. J. Bioresour. Bioprod. 7(1), 26–32 (2022)

    Article  Google Scholar 

  83. Barron, G.L., Thorn, R.G.: Destruction of nematodes by species of Pleurotus. Can. J. Bot. 65(4), 774 (1987)

    Google Scholar 

  84. Luo, H., Mo, M., Huang, X., Li, X., Zhang, K.: Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematodes. Mycol. 96, 1218 (2004)

    Google Scholar 

  85. Hiscox, J., O’Leary, J., Boddy, L.: Fungus wars: basidiomycete battles in wood decay. Stud. Mycol. 89(3), 117–124 (2018)

    Google Scholar 

  86. Noë, R., Kiers, E.T.: Mycorrhizal markets, firms, and co-ops. Trends Ecol. Evol. 33(10), 777–789 (2018)

    Google Scholar 

  87. Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L., Read, D.: Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agro-ecosystem functioning. Can. J. Bot. 82(8), 1016 (2004)

    Google Scholar 

  88. Simard, S.W., Perry, D.A., Jones, M.D., Myrold, D.D., Durall, D.M., Molina, R.: Net transfer of carbon between ectomycorrhizal tree species in the field. Nat. 388(6642), 579–582 (1997)

    Google Scholar 

  89. Simard, S.W.: Mycorrhizal networks facilitate tree communication, learning, and memory (2018)

    Google Scholar 

  90. Shang, Y., Feng, P., Wang, C.: Fungi that infect insects: altering host behavior and beyond. PLOS Pathog. 11(8), e1005037 (2015)

    Google Scholar 

  91. Schenk, H.E.A., Herrmann, R.G., Jeon, K.W., Müller, N.E., Schwemmler, W.: Intertaxonic combination versus symbiotic adaptation. In: Eukaryotism and Symbiosis. Springer Science & Business Media (2012)

    Google Scholar 

  92. Villarreal, L.P.: Origin of Group Identity: Viruses, Addiction and Cooperation. Springer Science & Business Media (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A., Vallverdu, J., Gandia, A., Chiolerio, A., Castro, O., Dodig-Crnkovic, G. (2023). Fungal Minds. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_26

Download citation

Publish with us

Policies and ethics