Skip to main content

Fungi Anaesthesia

  • Chapter
  • First Online:
Fungal Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 47))

  • 253 Accesses

Abstract

Electrical activity of fungus Pleurotus ostreatus is characterised by slow (hours) irregular waves of baseline potential drift and fast (minutes) action potential likes spikes of the electrical potential. An exposure of the mycelium colonised substrate to a chloroform vapour lead to several fold decrease of the baseline potential waves and increase of their duration. The chloroform vapour also causes either complete cessation of spiking activity or substantial reduction of the spiking frequency. Removal of the chloroform vapour from the growth containers leads to a gradual restoration of the mycelium electrical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sonner, J.M.: A hypothesis on the origin and evolution of the response to inhaled anesthetics. Anesth. Analg. 107(3), 849 (2008)

    Google Scholar 

  2. Eckenhoff, R.G.: Why can all of biology be anesthetized? Anesth. Analg. 107(3), 859–861 (2008)

    Google Scholar 

  3. Grémiaux, A., Yokawa, K., Mancuso, S., Baluška, F.: Plant anesthesia supports similarities between animals and plants: claude bernard’s forgotten studies. Plant Signal. Behav. 9(1), e27886 (2014)

    Google Scholar 

  4. Bernard, C., et al.: Lectures on the Phenomena of Life Common to Animals and Plants. Translation by Hoff, H.E., Guillemin, R., Guillemin, L., (1974)

    Google Scholar 

  5. Hiller, Stanislaw: Action of narcotics on the ameba by means of microinjection and immersion. Proc. Soc. Exp. Biol. Med. 24(5), 427–428 (1927)

    Article  Google Scholar 

  6. Oliver, A.E., Deamer, D.W., Akeson, M.: Sensitivity to anesthesia by pregnanolone appears late in evolution. Ann. N. Y. Acad. Sci. 625, 561–565 (1991)

    Article  Google Scholar 

  7. Milne, A., Beamish, T.: Inhalational and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can. J. Anesth. 46(3), 287–289 (1999)

    Article  Google Scholar 

  8. Nunn, J.F., Sturrock, J.E., Wills, E.J., Richmond, J.E., McPherson, C.K.: The effect of inhalational anaesthetics on the swimming velocity of tetrahymena pyriformis. J. Cell Sci. 15(3), 537–554 (1974)

    Google Scholar 

  9. Verra, F., Escudier, E., Pinchon, M.-C., Fleury, J., Bignon, J., Bernaudin, J.-F.: Effects of local anaesthetics (lidocaine) on the structure and function of ciliated respiratory epithelial cells. Biol. Cell 69, 99–105 (1990)

    Google Scholar 

  10. Carlile, M.J., Watkinson, S.C., Gooday, G.W.: The Fungi. Gulf Professional Publishing (2001)

    Google Scholar 

  11. Smith, M.L., Bruhn, J.N., Anderson, J.B.: The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356(6368), 428 (1992)

    Google Scholar 

  12. Dai, Y.-C., Cui, B.-K.: Fomitiporia ellipsoidea has the largest fruiting body among the fungi. Fungal Biol. 115(9), 813–814 (2011)

    Article  Google Scholar 

  13. Hanson, K.L., Nicolau Jr, D.V., Filipponi, L., Wang, L., Lee, A.P., Nicolau, D.V.: Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2(10), 1212–1220 (2006)

    Google Scholar 

  14. Held, M., Edwards, C., Nicolau, D.V.: Examining the behaviour of fungal cells in microconfined mazelike structures. In: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, vol. 6859, p. 68590U. International Society for Optics and Photonics (2008)

    Google Scholar 

  15. Marie, M., Edwards, C., Nicolau, D.V.: Fungal intelligence; or on the behaviour of microorganisms in confined micro-environments. In: Journal of Physics: Conference Series, vol. 178, p. 012005. IOP Publishing (2009)

    Google Scholar 

  16. Held, M., Lee, A.P., Edwards, C., Nicolau, D.V.: Microfluidics structures for probing the dynamic behaviour of filamentous fungi. Microelectron. Eng. 87(5–8), 786–789 (2010)

    Google Scholar 

  17. Held, M., Edwards, C. and Nicolau, D.V.: Probing the growth dynamics of neurospora crassa with microfluidic structures. Fungal Biol. 115(6), 493–505 (2011)

    Google Scholar 

  18. Boddy, L., Hynes, J., Bebber, D.P., Fricker, M.D.: Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50(1), 9–19 (2009)

    Google Scholar 

  19. Adamatzky, A.: Developing proximity graphs by Physarum polycephalum: does the plasmodium follow the Toussaint hierarchy? Parallel Process. Lett. 19(01), 105–127 (2009)

    Article  MathSciNet  Google Scholar 

  20. Adamatzky, A. (ed.): Bioevaluation of World Transport Networks. World Scientific (2012)

    Google Scholar 

  21. Adamatzky, A. (ed.): Advances in Physarum Machines: Sensing and Computing with Slime Mould. Springer, Berlin (2016)

    Google Scholar 

  22. Nakagaki, T., Yamada, H., Tóth, Á.: Intelligence: maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  23. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Res. Microbiol. 152(9), 767–770 (2001)

    Article  Google Scholar 

  24. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophys. Chem. 92(1–2), 47–52 (2001)

    Article  Google Scholar 

  25. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Phys. Rev. Lett. 99(6), 068104 (2007)

    Article  Google Scholar 

  26. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Google Scholar 

  27. Shirakawa, T., Adamatzky, A., Gunji, Y.-P., Miyake, Y.: On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int. J. Bifurc. Chaos 19(09), 3109–3117 (2009)

    Article  Google Scholar 

  28. Jones, J., Adamatzky, A.: Computation of the travelling salesman problem by a shrinking blob. Nat. Comput. 13(1), 1–16 (2014)

    Article  MathSciNet  Google Scholar 

  29. Slayman, C.L., Long, W.S., Gradmann, D.: “Action potentials” in Neurospora crassa, a mycelial fungus. Biochim. et Biophys. Acta (BBA)—Biomembr. 426(4), 732–744 (1976)

    Google Scholar 

  30. Olsson, S., Hansson, B.S.: Action potential-like activity found in fungal mycelia is sensitive to stimulation. Naturwissenschaften 82(1), 30–31 (1995)

    Article  Google Scholar 

  31. Adamatzky, A.: On spiking behaviour of oyster fungi Pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  32. Iwamura, T.: Correlations between protoplasmic streaming and bioelectric potential of a slime mold. Physarum polycephalum. Shokubutsugaku Zasshi 62(735–736), 126–131 (1949)

    Article  Google Scholar 

  33. Kamiya, N., Abe, S.: Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid Sci. 5(2), 149–163 (1950)

    Article  Google Scholar 

  34. Kishimoto, U.: Rhythmicity in the protoplasmic streaming of a slime mold, Physarum polycephalum. I. a statistical analysis of the electric potential rhythm. J. Gen. Physiol. 41(6), 1205–1222 (1958)

    Google Scholar 

  35. Meyer, R., Stockem, W.: Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)

    Article  Google Scholar 

  36. Trebacz, K., Dziubinska, H., Krol, E.: Electrical signals in long-distance communication in plants. In: Communication in Plants, pp. 277–290. Springer, Berlin (2006)

    Google Scholar 

  37. Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. Plant, Cell Environ. 30(3), 249–257 (2007)

    Article  Google Scholar 

  38. Zimmermann, M.R., Mithöfer, A.: Electrical long-distance signaling in plants. In: Long-Distance Systemic Signaling and Communication in Plants, pp. 291–308. Springer, Berlin (2013)

    Google Scholar 

  39. Simons, P.J.: The role of electricity in plant movements. New Phytol. 87(1), 11–37 (1981)

    Article  Google Scholar 

  40. Fromm, J.: Control of phloem unloading by action potentials in mimosa. Physiol. Plant. 83(3), 529–533 (1991)

    Article  Google Scholar 

  41. Sibaoka, T.: Rapid plant movements triggered by action potentials. Bot. Mag. Shokubutsu-gaku-zasshi 104(1), 73–95 (1991)

    Google Scholar 

  42. Volkov, A.G., Foster, J.C., Ashby, T.A., Walker, R.K., Johnson, J.A., Markin, V.S.: Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant, Cell Environ. 33(2), 163–173 (2010)

    Google Scholar 

  43. Minorsky, P.V.: Temperature sensing by plants: a review and hypothesis. Plant, Cell Environ. 12(2), 119–135 (1989)

    Article  Google Scholar 

  44. Volkov, A.G.: Green plants: electrochemical interfaces. J. Electroanal. Chem. 483(1–2), 150–156 (2000)

    Google Scholar 

  45. Roblin, G.: Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol. 26(3), 455–461 (1985)

    Article  Google Scholar 

  46. Pickard, B.G.: Action potentials in higher plants. Bot. Rev. 39(2), 172–201 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adamatzky, A., Gandia, A. (2023). Fungi Anaesthesia. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_5

Download citation

Publish with us

Policies and ethics