Skip to main content

On Stimulating Fungi Pleurotus Ostreatus with Hydrocortisone

  • Chapter
  • First Online:
Fungal Machines

Abstract

Fungi cells can sense extracellular signals via reception, transduction, and response mechanisms, allowing them to communicate with their host and adapt to their environment. They feature effective regulatory protein expressions that enhance and regulate their response and adaptation to various triggers such as stress, hormones, physical stimuli as light, and host factors. In our recent studies, we have shown that Pleurotus oyster fungi generate electrical potential impulses in the form of spike events in response to their exposure to environmental, mechanical and chemical triggers, suggesting that the nature of stimuli may be deduced from the fungal electrical responses. In this study, we explored the communication protocols of fungi as reporters of human chemical secretions such as hormones, addressing whether fungi can sense human signals. We exposed Pleurotus oyster fungi to hydrocortisone, which was directly applied to the surface of a fungal-colonised hemp shavings substrate, and recorded the electrical activity of the fungi. Hydrocortisone is a medicinal hormone replacement that is similar to the natural stress hormone cortisol. Changes in cortisol levels released by the body indicate the presence of disease and can have a detrimental effect on physiological process regulation. The response of fungi to hydrocortisone was also explored further using X-ray to reveal changes in the fungi tissue, where receiving hydrocortisone by the substrate can inhibit the flow of calcium and, as a result, reduce its physiological changes. This research could open the way for future studies on adaptive fungal wearables capable of detecting human physiological states and biosensors built of living fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors would like to thank Vasilis Mitsios and Stamatis Varvanikolakis for coordinating the scans at Bioiatriki, as well as Judith Gómez Cuyàs for her constructive suggestion.

  2. 2.

    Note that here we intentionally drop the m superscript to simplify mathematical notations.

References

  1. Cottier, F., Mühlschlegel, F.A.: Communication in fungi. Int. J. Microbiol. 2012(1):1–9 (2012)

    Google Scholar 

  2. Alonso-Monge, R., Román, E., Arana, D.M., Pla, J., Nombela, C.: Fungi sensing environmental stress. Clin. Microbiol. Infect. 15(1), 17–19 (2009)

    Article  Google Scholar 

  3. Hou, L., Wang, L., Xiangli, W., Gao, W., Zhang, J., Huang, C.: Expression patterns of two pal genes of pleurotus ostreatus across developmental stages and under heat stress. BMC Microbiol. 19(1), 1–16 (2019)

    Article  Google Scholar 

  4. Adamatzky, A.: On spiking behaviour of oyster fungi pleurotus djamor. Sci. Rep. 8(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  5. Beasley, A.E., Powell, A.L., Adamatzky, A.: Capacitive storage in mycelium substrate (2020). arXiv:2003.07816

  6. Beasley, A.E., Powell, A.L., Adamatzky, A.: Fungal photosensors (2020). arXiv:2003.07825

  7. Adamatzky, A., Gandia, A.: On electrical spiking of ganoderma resinaceum. Biophys. Rev. Lett. 1–9 (2021)

    Google Scholar 

  8. Adamatzky, A., Tuszynski, J., Pieper, J., Nicolau, D.V., Rinalndi, R., Sirakoulis, G., Erokhin, V., Schnauss, J., Smith, D.M.: Towards cytoskeleton computers. A proposal. In: Adamatzky, A., Akl, S., Sirakoulis, G. (eds.), From Parallel to Emergent Computing. CRC Group/Taylor & Francis (2019)

    Google Scholar 

  9. Adamatzky, A., Gandia, A., Chiolerio, A.: Fungal sensing skin (2020). arXiv:2008.09814

  10. Dehshibi, M.M., Adamatzky, A.: Electrical activity of fungi: spikes detection and complexity analysis. Biosystems 203, 104373 (2021)

    Google Scholar 

  11. Adamatzky, A., Ayres, P., Belotti, G., Wösten, H.: Fungal architecture position paper. Int. J. Unconv. Comput. 14 (2019)

    Google Scholar 

  12. Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Powell, A.L., Beasley, A.E., Mayne, R.: On boolean gates in fungal colony. Biosystems 193, 104138 (2020)

    Google Scholar 

  13. Goles, E., Tsompanas, M.-A., Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Martínez, G.J.: Computational universality of fungal sandpile automata. Phys. Lett. A 126541 (2020)

    Google Scholar 

  14. Adamatzky, A., Gandia, A., Chiolerio, A.: Fungal sensing skin. Fungal Biol. Biotechnol. 8(1), 1–6 (2021)

    Google Scholar 

  15. Adamatzky, A., Nikolaidou, A., Gandia, A., Chiolerio, A., Dehshibi, M.M.: Reactive fungal wearable. Biosystems 199, 104304 (2021)

    Article  Google Scholar 

  16. Jang, H.-J., Lee, T., Song, J., Russell, L., Li, H., Dailey, J., Searson, P.C., Katz, H.E.: Electronic cortisol detection using an antibody-embedded polymer coupled to a field-effect transistor. ACS Appl. Mater. Interfaces 10(19), 16233–16237 (2018)

    Google Scholar 

  17. Kaushik, A., Vasudev, A., Arya, S.K., Pasha, S.K., Bhansali, S.: Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 53, 499–512 (2014)

    Google Scholar 

  18. Russell, E., Koren, G., Rieder, M., Van Uum, S.H.M.: The detection of cortisol in human sweat: implications for measurement of cortisol in hair. Therap. Drug Monit. 36(1), 30–34 (2014)

    Google Scholar 

  19. Gholami, N., Dehshibi, M.M., Adamatzky, A., Rueda-Toicen, A., Zenil, H., Fazlali, M., Masip, D.: A novel method for reconstructing ct images in gate/geant4 with application in medical imaging: a complexity analysis approach. J. Inf. Proc. 28, 161–168 (2020)

    Google Scholar 

  20. Marple, L.: Computing the discrete-time “analytic’’ signal via FFT. IEEE Trans. Signal Process. 47(9), 2600–2603 (1999)

    Article  MATH  Google Scholar 

  21. Claude Elwood Shannon: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)

    Article  MathSciNet  Google Scholar 

  22. Dekking, F.M., Kraaikamp, C., Lopuhaä, H.P., Meester, L.E.: Understanding why and how. Springer Science & Business Media, A Modern Introduction to Probability and Statistics (2005)

    Google Scholar 

  23. Barca, P., Giannelli, M., Fantacci, M.E., Caramella, D.: Computed tomography imaging with the adaptive statistical iterative reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction. Australasian Phys. Eng. Sci. Med. 41(2), 463–473 (2018)

    Google Scholar 

  24. Aramburu, J., Heitman, J., Crabtree, G.R.: Calcineurin: a central controller of signalling in eukaryotes: workshop on the calcium/calcineurin/NFAT pathway: regulation and function. EMBO Rep. 5(4):343–348 (2004)

    Google Scholar 

  25. Fan, J., Farmen, M., Gijbels, I.: Local maximum likelihood estimation and inference. J. R. Stat. Soc.: Ser. B (Statistical Methodology) 60(3), 591–608 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Petz, D.: Quantum Information Theory and Quantum Statistics. Springer Science & Business Media (2007)

    Google Scholar 

  27. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Google Scholar 

  28. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pp. 547–561. University of California Press (1961)

    Google Scholar 

  29. Tsallis, C.: Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys. 52(1), 479–487 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kaspar, F., Schuster, H.G.: Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 36(2), 842 (1987)

    Article  MathSciNet  Google Scholar 

  31. Chyun, Y.S., Kream, B.E., Raisz, L.G.: Cortisol decreases bone formation by inhibiting periosteal cell proliferation. Endocrinology 114(2), 477–480 (1984)

    Google Scholar 

  32. Davies, E., Kenyon, C.J., Fraser, R.: The role of calcium ions in the mechanism of ACTH stimulation of cortisol synthesis. Steroids 45(6), 551–560 (1985)

    Google Scholar 

  33. Hohmann, S.: Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66(2), 300–372 (2002)

    Article  Google Scholar 

  34. Bahn, Y.-S., Kojima, K., Cox, G.M., Heitman, J.: Specialization of the hog pathway and its impact on differentiation and virulence of cryptococcus neoformans. Mol. Biol. Cell. 16(5), 2285–2300 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dehshibi, M.M. et al. (2023). On Stimulating Fungi Pleurotus Ostreatus with Hydrocortisone. In: Adamatzky, A. (eds) Fungal Machines. Emergence, Complexity and Computation, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-031-38336-6_9

Download citation

Publish with us

Policies and ethics