Skip to main content

Measurement of Blood Flow in the Carotid Artery as one of the Elements of Assessing the Ability for Pilots in the Gravitational Force Conditions–Review of Available Solutions

  • Conference paper
  • First Online:
The Latest Developments and Challenges in Biomedical Engineering (PCBEE 2023)

Abstract

Continuous monitoring of cardiac function is highly desirable for long-term assessment of cardiovascular health, detection of acute cardiac dysfunction. Information from volume flow rate may be important in a variety of different clinical circumstances, such as stroke, arteriovenous malformation, cardiac failure. The main aim of the work was review of non-invasive measurements of carotid blood flow methods and devices. There are various types of methods and devices for monitoring blood flow in the carotid artery, however, so far no mobile recorder of the appropriate quality of registration has been developed. The most promising solutions are wireless wearable patches that, when applied to the skin of the neck, will not be a burden during measurements. This is important when measurements are to be made, during extreme activities, such as in pilots. As a result of the conducted research, there is a presumption that carotid blood flow measurements methods has great potential to be a useful tool in the diagnosis of the pilot's predisposition, at the same time performing a warning function, the so-called alerters, before the imminent overload loss of consciousness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu, H., Huang, H., Li, M., et al.: A wearable cardiac ultrasound imager. Nature 613, 667–675 (2023)

    Article  Google Scholar 

  2. Houte, J., Mooi, F.J., Montenij, L.J., Meijs, L.P.B., Suriani, I., Conjaerts, B.C.M., Houterman, S., Bouwman, A.R.: Correlation of carotid doppler blood flow with invasive cardiac output measurements in cardiac surgery patients. J Cardiothorac Vasc Anesth., 36(4), 1081–1091 (2022)

    Google Scholar 

  3. Goldman, L.: Cecil medicine. Saunders Elsevier, (2008)

    Google Scholar 

  4. Likittanasombut, P., Reynolds, P., Meads, D., Tegeler, C.: Volume flow rate of common carotid artery measured by Doppler method and Color Velocity Imaging Quantification (CVI-Q). J. Neuroimaging 16(1), 34–38 (2006)

    Article  Google Scholar 

  5. Eicke, B.M., Tegeler, C.H.: Ultrasonic quantification of blood flow volume. In: Tegeler, C.H., Babikian, V.L., Gomez, C.R. (eds.) Neurosonology. Missouri: Mosby-Year Book, Inc., St. Louis, MO, pp. 101−110 (1996)

    Google Scholar 

  6. Houte, J., Raaijmaakers, A.E., Mooi, F.J., Meijs, L.P.B., Boer, E.C., Suriani, I., Houterman, S., Montenij, L.J., Bouwman, A.R.: Evaluating corrected carotid flow time as a non-invasive parameter for trending cardiac output and stroke volume in cardiac surgery patients. J. Ultrasound, (2022)

    Google Scholar 

  7. Girotto, V., Teboul, J.L., Beurton, A., et al.: Carotid and femoral Doppler do not allow the assessment of passive leg raising effects. Ann Intensive Care 8, 67 (2018)

    Article  Google Scholar 

  8. Suriani, I., Houte, J., Boer, E.C., Knippenberg, L., Manzari, S., Mischi, M., Bouwman, R.A.: Carotid Doppler ultrasound for non-invasive haemodynamic monitoring: a narrative review. Physiol Meas. 43(10), (2023)

    Google Scholar 

  9. Brandt, A.H. et al.: A comparison study of vector velocity, spectral Doppler and magnetic resonance of blood flow in the common carotid artery Ultrasound Med. Biol. 44, 1751–61 (2018)

    Google Scholar 

  10. Bussmann, B.M., Sharma, S., McGregor, D., Hulme, W., Harris, T.: Observational study in healthy volunteers to define interobserver reliability of ultrasound haemodynamic monitoring techniques performed by trainee doctors Eur. J. Emerg. Med. 26, 217–223 (2019)

    Google Scholar 

  11. Cencetti, S., Lagi, A., Cipriani, M., Fattorini, L., Bandinelli, G., Bernardi, L.: Autonomic control of the cerebral circulation during normal and impaired peripheral circulatory control. Heart 82, 365–372 (1999)

    Article  Google Scholar 

  12. Mnich, K.: The methods of survey blood fl ow in human body, Works of the Strata Mechanics Research Institute PAN, Tom 6, nr 3–4, s. 171–184 (2004), in Polish

    Google Scholar 

  13. Kuwabara, K., Higuchi, Y., Ogasawara, T., Koizumi, H., Haga, T.: Wearable blood flowmeter appcessory with low-power laser Doppler signal processing for daily-life healthcare monitoring. Annu. Int. Conf. IEEE. Eng. Med. Biol. Soc. 2014, 6274–6277 (2014)

    Google Scholar 

  14. Traczyk, W.: Human functional diagnostics. Medical Publisher, Warszawa (1999). in Polish

    Google Scholar 

  15. Noszczyk, W.: Surgery of peripheral arteries and veins. Medical Publisher, Warszawa (1998). in Polish

    Google Scholar 

  16. Du, Y., Shen, Y.: V Flow a novel visualization of blood flow. Mindray Healthc. Reach., (2016)

    Google Scholar 

  17. Filipczyński, L.: Blood flows, Polish Academy of Sciences PAN. Warszawa- Poznań (1980), in Polish

    Google Scholar 

  18. Steinmetz, M.P.: Nutritional care of the spinal cord–injured patient, calorimetry: measurement of energy expenditures. Benzel’s Spine Surg., (2017)

    Google Scholar 

  19. Priebe, L.: Methods of thermal blood flow measurement. Bibl Radiol. 6, 33–44 (1975)

    Google Scholar 

  20. Xingting, L., Xingyu, C., et al.: The thermal behavior of blood flow in the arteries with various radii and various stenosis angles using non-Newtonian Sisko model. Alex. Eng. J. 61(9), 7195–7201 (2022)

    Article  Google Scholar 

  21. Sel, K., Osman, D., Jafari, R.: Non-invasive cardiac and respiratory activity assessment from various human body locations using bioimpedance. IEEE Open J. Eng. Med. Biol. 2, 210–217 (2021)

    Article  Google Scholar 

  22. Bu, X., Zhang, Y., Chen, L., et al.: Comparison of carotid blood flow measured by ultrasound and cardiac output in patients undergoing cardiac surgery. Research Square, (2022)

    Google Scholar 

  23. Cheong, I., Otero, C.V., Sosa, F.A., Tort, O.B., Merlo, P.M., Tamagnone, F.M.: Carotid flow as a surrogate of the left ventricular stroke volume. J. Clin. Monit. Comput, (2022)

    Google Scholar 

  24. Du, Y,. Ding, H., He, L., Yiu, B.Y.S., Deng, L., Yu, A.C.H., Zhu, L.: Quantitative blood flow measurements in the common carotid artery: A comparative study of high-frame-rate ultrasound vector flow imaging, pulsed wave doppler, and phase contrast magnetic resonance imaging. Diagnostics (Basel), 12(3), 690 (2022)

    Google Scholar 

  25. Kenny, J.S.: Assessing fluid intolerance with doppler ultrasonography: a physiological framework. Med Sci (Basel) 10(1), 12 (2022)

    Google Scholar 

  26. Kenny, J.S., Elfarnawany, M., Yang, Z., Eibl, A.M., Eibl, J.K., Kim, C.H., Johnson, B.D.: A wireless ultrasound patch detects mild-to-moderate central hypovolemia during lower body negative pressure. J. Trauma. Acute. Care. Surg, 93(2S Suppl 1), S35-S40 (2022).

    Google Scholar 

  27. Kenny, J.S., Barjaktarevic, I., Mackenzie, D.C., Elfarnawany, M., Yang, Z., Eibl, A.M., Eibl, J.K., Kim, C.H., Johnson, B.D.: Carotid artery velocity time integral and corrected flow time measured by a wearable Doppler ultrasound detect stroke volume rise from simulated hemorrhage to transfusion. BMC Res Notes 15(1), 7 (2022)

    Article  Google Scholar 

  28. Kenny, J.S., Munding, C.E., Eibl, J.K., Eibl, A.M., Long, B.F., Boyes, A., Yin, J., Verrecchia, P., Parrotta, M., Gatzke, R., Magnin, P.A., Burns, P.N., Foster, F.S., Demore, C.E.M.: A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. Sci Rep. 11(1), 7780 (2021).

    Google Scholar 

  29. Wang, C., Qi, B., Lin, M., Zhang, Z., Makihata, M., Liu, B., Zhou, S., Huang, Y.H., Hu, H., Gu, Y., Chen, Y., Lei, Y., Lee, T., Chien, S., Jang, K.I., Kistler, E.B., Xu, S.: Continuous monitoring of deep-tissue hemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5(7), 749–758 (2021)

    Article  Google Scholar 

  30. Wang, F., Jin, P., Feng, Y., Fu, J., Wang, P., Liu, X., Zhang, Y., Ma, Y., Yang, Y., Yang, A., Feng, X.: Flexible doppler ultrasound device for the monitoring of blood flow velocity. Sci Adv. 7(44), (2021).

    Google Scholar 

  31. Hu, H., Zhu, X., Wang, C., Zhang, L., Li, X., Lee, S., Huang, Z., Chen, R., Chen, Z., Wang, C., Gu, Y., Chen, Y., Lei, Y., Zhang, T., Kim, N., Guo, Y., Teng, Y., Zhou, W., Li, Y., Nomoto, A., Sternini, S., Zhou, Q., Pharr, M., Scalea, FL., Xu, S.: Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci Adv., 4(3), (2018)

    Google Scholar 

  32. Shen, H., Li, S., Wang, Y., Qin, K.R.: Effects of the arterial radius and the center-line velocity on the conductivity and electrical impedance of pulsatile flow in the human common carotid artery. Med. Biol. Eng. Comput. 57(2), 441–451 (2019)

    Article  Google Scholar 

  33. Campen, C.L.M.C., Verheugt, F.W.A., Visser, F.C.: Cerebral blood flow changes during tilt table testing in healthy volunteers, as assessed by Doppler imaging of the carotid and vertebral arteries. Clin. Neurophysiol. Pract., 3, 91–95 (2018)

    Google Scholar 

  34. Jalil, B., Thompson, P., Cavallazzi, R., Marik, P., Mann, J., El-Kersh, K., Guardiola, J., Saad, M.: Comparing changes in carotid flow time and stroke volume induced by passive leg raising. Am. J. Med. Sci. 355(2), 168–173 (2018)

    Article  Google Scholar 

  35. Webb, R.C., Ma, Y., Krishnan, S., Li, Y., Yoon, S., Guo, X., Feng, X., Shi, Y., Seidel, M., Cho, N.H., Kurniawan, J., Ahad, J., Sheth, N., Kim, J., Taylor, J.G., Darlington, T., Chang, K., Huang, W., Ayers, J., Gruebele, A., Pielak, R.M., Slepian, M.J., Huang, Y., Gorbach, A.M., Rogers, J.A.: Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci Adv. 1(9), (2015)

    Google Scholar 

  36. Sobotnicka, E., Sobotnicki, A., Czerw, M., Badura, G., Sobiech, M., Krej, M., Puchalska, L., Dziuda, Ł.: A multiparameter examination system to assess self-regulatory mechanisms of the cardiovascular system under simulated hypergravity conditions. In: 2018 Baltic URSI Symposium (URSI), pp. 87–90 (2018). https://doi.org/10.23919/URSI.2018.8406698

  37. Sobotnicka, E., Sobotnicki, A., Czerw, M., Badura, G., Sobiech, M., Krej, M., Puchalska, L., Dziuda L.:Tests for pilots under simulated hypergravity conditions—technological challenges and research methodology. In: 2018 25th International conference “mixed design of integrated circuits and system” (MIXDES), pp. 465–470 (2018). https://doi.org/10.23919/MIXDES.2018.8436651

  38. Sobotnicka, E., Sobotnicki, A., Czerw, M., Badura, G., Krej, M., Puchalska, L., Kowalczuk, K., Gaździński, S., Dziuda Ł.: Methods to assess self-regulatory mechanisms of the cardiovascular system under simulated hypergravity conditions. In: 2019 MIXDES—26th International conference mixed design of integrated circuits and systems. pp. 407–412(2019). https://doi.org/10.23919/MIXDES.2019.87871529

Download references

Funding

This work was supported by the resources of the National Centre of Research and Development, Poland, within the framework of the Program for National Defense and Security, Project DOB-BIO-12–05-001–2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Sobotnicka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sobotnicka, E., Mocha, J., Sobotnicki, A., Gałecka, J., Gacek, A. (2024). Measurement of Blood Flow in the Carotid Artery as one of the Elements of Assessing the Ability for Pilots in the Gravitational Force Conditions–Review of Available Solutions. In: Strumiłło, P., Klepaczko, A., Strzelecki, M., Bociąga, D. (eds) The Latest Developments and Challenges in Biomedical Engineering. PCBEE 2023. Lecture Notes in Networks and Systems, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-031-38430-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38430-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38429-5

  • Online ISBN: 978-3-031-38430-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics