Skip to main content

Colour Clustering and Deep Transfer Learning Techniques for Breast Cancer Detection Using Mammography Images

  • Conference paper
  • First Online:
The Latest Developments and Challenges in Biomedical Engineering (PCBEE 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 746))

Included in the following conference series:

  • 215 Accesses

Abstract

Breast cancer is a major global health concern affecting millions of women each year. Computer-aided diagnosis (CAD) systems have the potential to contribute significantly to early detection and reducing the mortality rate of breast cancer. This paper proposes a new methodology for breast cancer detection utilising data analytics, artificial intelligence, and mammograms. The approach is a mixed methodology based on colour clustering and deep transfer learning techniques to extract features from mammogram images. The proposed method was validated using the mini-DDSM mammogram images dataset, and its effectiveness was evaluated using various metrics such as accuracy, specificity, precision, recall, and F1 score. The results showed that all networks had high detection accuracy, with GoogleNet achieving the highest (99.58%) and ShuffleNet the lowest (97.08%). The proposed method achieved 100% detection accuracy using ResNet18, VGG16, ShuffleNet, DarkNet, and NasnetLarge, while Inception-ResNet-v2 had a detection accuracy of 98.33% with LRC and 99.17% with SVM. The proposed method has demonstrated the potential to improve the performance of CAD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO webpage, https://www.who.int/news-room/fact-sheets/detail/breast-cancer, last accessed 2023/03/04

  2. WHO webpage, https://www.who.int/news-room/fact-sheets/detail/cancer, last accessed 2023/03/04

  3. Youlden, D.R., Cramb, S.M., Dunn, N.A., Muller, J.M., Pyke, C.M., Baade, P.D.: The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 36(3), 237–248 (2012)

    Article  Google Scholar 

  4. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., Moore, R., Chang, K., Munishkumaran, S.: Current status of the digital database for screening mammography. Digit. Mammogr.: Nijmegen 1998, 457–460 (1998)

    Article  Google Scholar 

  5. Moghbel, M., Mashohor, S.: A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection. Artif. Intell. Rev. 39, 305–313 (2013)

    Article  Google Scholar 

  6. Kuhl, C.K., Schrading, S., Strobel, K., Schild, H.H., Hilgers, R.D., Bieling, H.B.: Abbreviated breast magnetic resonance imaging (MRI): First postcontrast subtracted images and maximum-intensity projection—a novel approach to breast cancer screening with MRI. J. Clin. Oncol. 1 32(22), 2304–2310 (2014)

    Article  Google Scholar 

  7. Lee, C.H., Dershaw, D.D., Kopans, D., Evans, P., Monsees, B., Monticciolo, D., Brenner, R.J., Bassett, L., Berg, W., Feig, S., Hendrick, E.: Breast cancer screening with imaging: Recommendations from the Society of Breast Imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J. Am. Coll. Radiol. 1 7(1), 18–27 (2010)

    Article  Google Scholar 

  8. Lavayssière, R., Cabée, A.E., Filmont, J.E.: Positron emission tomography (PET) and breast cancer in clinical practice. Eur. J. Radiol. 1 69(1), 50–58 (2009)

    Article  Google Scholar 

  9. Veta, M., Pluim, J.P., Van Diest, P.J., Viergever, M.A.: Breast cancer histopathology image analysis: A review. IEEE Trans. Biomed. Eng. 30 61(5), 1400–1411 (2014)

    Article  Google Scholar 

  10. Chang, C.H., Sibala, J.L., Fritz, S.L., Dwyer, S.J., 3rd., Templeton, A.W., Lin, F., Jewell, W.R.: Computed tomography in detection and diagnosis of breast cancer. Cancer 46(4 Suppl), 939–946 (1980)

    Article  Google Scholar 

  11. Dar, R.A., Rasool, M., Assad, A.: Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Comput. Biol. Med. 106073 (2022)

    Google Scholar 

  12. Madani, M., Behzadi, M.M., Nabavi, S.: The role of deep learning in advancing breast cancer detection using different imaging modalities: A systematic review. Cancers 29 14(21), 5334 (2022)

    Article  Google Scholar 

  13. Freeman, K., Geppert, J., Stinton, C., Todkill, D., Johnson, S., Clarke, A., Taylor-Phillips, S.: Use of artificial intelligence for image analysis in breast cancer screening programmes: Systematic review of test accuracy. Bmj 374 (2021)

    Google Scholar 

  14. Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25(1), 44–56 (2019)

    Article  Google Scholar 

  15. Tang, J., Rangayyan, R.M., Xu, J., El Naqa, I., Yang, Y.: Computer-aided detection and diagnosis of breast cancer with mammography: Recent advances. IEEE Trans. Inf Technol. Biomed. 13(2), 236–251 (2009)

    Article  Google Scholar 

  16. Yassin, N.I., Omran, S., El Houby, E.M., Allam, H.: Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. Comput. Methods Programs Biomed. 156, 25–45 (2018)

    Article  Google Scholar 

  17. McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., Back, T., Chesus, M., Corrado, G.S., Darzi, A., Etemadi, M.: International evaluation of an AI system for breast cancer screening. Nature 577(7788), 89–94 (2020)

    Article  Google Scholar 

  18. Jalalian, A., Mashohor, S.B., Mahmud, H.R., Saripan, M.I., Ramli, A.R., Karasfi, B.: Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: A review. Clin. Imaging 37(3), 420–426 (2013)

    Article  Google Scholar 

  19. Singh, L., Jaffery, Z.A.: Computer-aided diagnosis of breast cancer in digital mammograms. Int. J. Biomed. Eng. Technol. 27(3), 233–246 (2018)

    Article  Google Scholar 

  20. Chaieb, R., Kalti, K.: Feature subset selection for classification of malignant and benign breast masses in digital mammography. Pattern Anal. Appl. 22, 803–829 (2019)

    Article  MathSciNet  Google Scholar 

  21. Mavroforakis, M.E., Georgiou, H.V., Dimitropoulos, N., Cavouras, D., Theodoridis, S.: Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif. Intell. Med. 37(2), 145–162 (2006)

    Article  Google Scholar 

  22. Peng, W., Mayorga, R.V., Hussein, E.M.: An automated confirmatory system for analysis of mammograms. Comput. Methods Programs Biomed. 125, 134–44 (2016)

    Google Scholar 

  23. Chakravarthy, S.S., Rajaguru, H.: Automatic detection and classification of mammograms using improved extreme learning machine with deep learning. Irbm. 43(1), 49–61 (2022)

    Article  Google Scholar 

  24. Malebary, S.J., Hashmi, A.: Automated breast mass classification system using deep learning and ensemble learning in digital mammogram. IEEE Access. 9, 55312–55328 (2021)

    Article  Google Scholar 

  25. Sun, L., Wang, J., Hu, Z., Xu, Y., Cui, Z.: Multi-view convolutional neural networks for mammographic image classification. IEEE Access. 7, 126273–126282 (2019)

    Article  Google Scholar 

  26. Singh, V.K., Rashwan, H.A., Romani, S., Akram, F., Pandey, N., Sarker, M.M., Saleh, A., Arenas, M., Arquez, M., Puig, D., Torrents-Barrena, J.: Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst. Appl. 139, 112855 (2020)

    Article  Google Scholar 

  27. Swiderski, B., Osowski, S., Kurek, J., Kruk, M., Lugowska, I., Rutkowski, P., Barhoumi, W.: Novel methods of image description and ensemble of classifiers in application to mammogram analysis. Expert Syst. Appl. 81, 67–78 (2017)

    Article  Google Scholar 

  28. Gnanasekaran, V.S., Joypaul, S., Meenakshi Sundaram, P., Chairman, D.D.: Deep learning algorithm for breast masses classification in mammograms. IET Image Proc. 14(12), 2860–2868 (2020)

    Article  Google Scholar 

  29. Khan, S., Islam, N., Jan, Z., Din, I.U., Rodrigues, J.J.: A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn. Lett. 125, 1–6 (2019)

    Article  Google Scholar 

  30. Falconí, L., Pérez, M., Aguilar, W., Conci, A.: Transfer learning and fine tuning in mammogram bi-rads classification. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 475–480 (2020)

    Google Scholar 

  31. Zhang, X., Zhang, Y., Han, E.Y., Jacobs, N., Han, Q., Wang, X., Liu, J.: Classification of whole mammogram and tomosynthesis images using deep convolutional neural networks. IEEE Trans. Nanobiosci. 17(3), 237–242 (2018)

    Article  Google Scholar 

  32. Bagchi, S., Mohd, M.N., Debnath, S.K., Nafea, M., Suriani, N.S., Nizam, Y.: Performance comparison of pre-trained residual networks for classification of the whole mammograms with smaller dataset. In: 2020 IEEE Student Conference on Research and Development (SCOReD), pp. 368–373 (2020)

    Google Scholar 

  33. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)

    Article  Google Scholar 

  34. Jaffar, M.A.: Deep learning-based computer aided diagnosis system for breast mammograms. Int. J. Adv. Comput. Sci. Appl. 8(7), 286–290 (2017)

    Google Scholar 

  35. Shakeel, S., Raja, G.: Classification of breast cancer from mammogram images using deep convolution neural networks. In: 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST), IEEE, pp. 595–599 (2021)

    Google Scholar 

  36. Muduli, D., Dash, R., Majhi, B.: Automated diagnosis of breast cancer using multi-modal datasets: A deep convolution neural network-based approach. Biomed. Signal Process. Control 71, 102825 (2022)

    Article  Google Scholar 

  37. Sahu, A., Das, P.K., Meher, S.: High accuracy hybrid CNN classifiers for breast cancer detection using mammogram and ultrasound datasets. Biomed. Signal Process. Control 80, 104292 (2023)

    Article  Google Scholar 

  38. Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: A literature review. BMC Med. Imaging 22(1), 69 (2022)

    Article  Google Scholar 

  39. Belhi, A., Ahmed, H.O., Alfaqheri, T., Bouras, A., Sadka, A.H., Foufou, S.: Study and evaluation of pre-trained CNN networks for cultural heritage image classification. Data Anal. Cult. Herit.: Curr. Trends Concepts, 47–69 (2021)

    Google Scholar 

  40. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  41. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–8 (1979)

    Google Scholar 

  42. Lekamlage, C.D., Afzal, F., Westerberg, E., Cheddad, A.: Mini-DDSM: Mammography-based automatic age estimation. In: 2020 3rd International Conference on Digital Medicine and Image Processing, pp. 1–6 (2020)

    Google Scholar 

  43. Matplotlib webpage, https://matplotlib.org/stable/tutorials/colors/colormap-manipulation.html, last accessed 2023/03/05

  44. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. Proc. AAAI Conf. Artif. Intell. 31(1), 4278–4284 (2017)

    Google Scholar 

  45. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  46. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 1–9 (2015)

    Google Scholar 

  47. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional neural network for mobile devices. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 6848–6856 (2018)

    Google Scholar 

  48. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 7263–7271 (2017)

    Google Scholar 

  49. Hosmer, Jr. D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression. John Wiley & Sons (2013)

    Google Scholar 

  50. Brereton, R.G., Lloyd, G.R.: Support vector machines for classification and regression. Analyst. 135(2), 230–267 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoke K. Nandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, H.O.A., Nandi, A.K. (2024). Colour Clustering and Deep Transfer Learning Techniques for Breast Cancer Detection Using Mammography Images. In: Strumiłło, P., Klepaczko, A., Strzelecki, M., Bociąga, D. (eds) The Latest Developments and Challenges in Biomedical Engineering. PCBEE 2023. Lecture Notes in Networks and Systems, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-031-38430-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38430-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38429-5

  • Online ISBN: 978-3-031-38430-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics