Skip to main content

PAC Privacy: Automatic Privacy Measurement and Control of Data Processing

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14082))

Included in the following conference series:

  • 2030 Accesses

Abstract

We propose and study a new privacy definition, termed Probably Approximately Correct (PAC) Privacy. PAC Privacy characterizes the information-theoretic hardness to recover sensitive data given arbitrary information disclosure/leakage during/after any processing. Unlike the classic cryptographic definition and Differential Privacy (DP), which consider the adversarial (input-independent) worst case, PAC Privacy is a simulatable metric that quantifies the instance-based impossibility of inference. A fully automatic analysis and proof generation framework is proposed: security parameters can be produced with arbitrarily high confidence via Monte-Carlo simulation for any black-box data processing oracle. This appealing automation property enables analysis of complicated data processing, where the worst-case proof in the classic privacy regime could be loose or even intractable. Moreover, we show that the produced PAC Privacy guarantees enjoy simple composition bounds and the automatic analysis framework can be implemented in an online fashion to analyze the composite PAC Privacy loss even under correlated randomness. On the utility side, the magnitude of (necessary) perturbation required in PAC Privacy is not lower bounded by \({\varTheta }(\sqrt{d})\) for a d-dimensional release but could be O(1) for many practical data processing tasks, which is in contrast to the input-independent worst-case information-theoretic lower bound. Example applications of PAC Privacy are included with comparisons to existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, we say \(X_0\) and \(X'_0\) are adjacent if they only differ in one datapoint, i.e., their Hamming distance is 1.

  2. 2.

    https://www.mathworks.com/help/stats/sample-data-sets.html.

  3. 3.

    In Theorem 9, we restrict the noise distribution to be Gaussian. We leave a generic lower bound for arbitrary noise distribution as an open problem.

  4. 4.

    If each entry of X is independently generated, and \(\mathcal {M}\) satisfies \(\xi \)-Concentrated Differential Privacy (CDP), then \(\textsf{MI}(X; \mathcal {M}(X)) \le n\xi \) [13].

  5. 5.

    An upper bound on individual sensitivity of Empirical Risk Minimization is only known for strongly-convex optimization [17] with an additional Lipschitz assumption and the loss function needs to be a sum of individual losses on each sample.

  6. 6.

    Besides MI, there are many other efficient side-channel attacks based on different statistical tests such as Pearson correlation [12].

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Asi, H., Feldman, V., Koren, T., Talwar, K.: Private stochastic convex optimization: optimal rates in l1 geometry. In: International Conference on Machine Learning, pp. 393–403. PMLR (2021)

    Google Scholar 

  3. Asi, H., Feldman, V., Talwar, K.: Optimal algorithms for mean estimation under local differential privacy. arXiv preprint arXiv:2205.02466 (2022)

  4. Balle, B., Barthe, G., Gaboardi, M.: Privacy amplification by subsampling: tight analyses via couplings and divergences. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  5. Balle, B., Barthe, G., Gaboardi, M., Hsu, J., Sato, T.: Hypothesis testing interpretations and renyi differential privacy. In: International Conference on Artificial Intelligence and Statistics, pp. 2496–2506. PMLR (2020)

    Google Scholar 

  6. Bassily, R., Groce, A., Katz, J., Smith, A.: Coupled-worlds privacy: Exploiting adversarial uncertainty in statistical data privacy. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 439–448. IEEE (2013)

    Google Scholar 

  7. Bassily, R., Nissim, K., Smith, A., Steinke, T., Stemmer, U., Ullman, J.: Algorithmic stability for adaptive data analysis. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 1046–1059 (2016)

    Google Scholar 

  8. Bassily, R., Smith, A., Thakurta, A.: Private empirical risk minimization: efficient algorithms and tight error bounds. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer science, pp. 464–473. IEEE (2014)

    Google Scholar 

  9. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belghazi, M.I., et al.: Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062 (2018)

  11. Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless database privacy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 215–232. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_12

    Chapter  Google Scholar 

  12. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  13. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 635–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_24

    Chapter  Google Scholar 

  14. Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Biocomputing 2000, pp. 418–429. World Scientific (1999)

    Google Scholar 

  15. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_33

    Chapter  MATH  Google Scholar 

  16. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Probability of error in information-hiding protocols. In: 20th IEEE Computer Security Foundations Symposium (CSF 2007), pp. 341–354. IEEE (2007)

    Google Scholar 

  17. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12(3), 1069–1109 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Chaudhuri, K., Sarwate, A., Sinha, K.: Near-optimal differentially private principal components. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  19. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications: a reality today, a challenge tomorrow. In: 2010 IEEE Symposium on Security and Privacy, pp. 191–206. IEEE (2010)

    Google Scholar 

  20. Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., Carin, L.: Club: a contrastive log-ratio upper bound of mutual information. In: International Conference on Machine Learning, pp. 1779–1788. PMLR (2020)

    Google Scholar 

  21. Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 375–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_13

    Chapter  Google Scholar 

  22. Cohen, A., Nissim, K.: Towards formalizing the GDPR’s notion of singling out. Proc. Natl. Acad. Sci. 117(15), 8344–8352 (2020)

    Article  Google Scholar 

  23. Cover, T.M.: Elements of Information Theory. Wiley, Hoboken (1999)

    Google Scholar 

  24. Dong, J., Roth, A., Su, W.J.: Gaussian differential privacy. arXiv preprint arXiv:1905.02383 (2019)

  25. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  26. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta, A.: Amplification by shuffling: From local to central differential privacy via anonymity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–2479. SIAM (2019)

    Google Scholar 

  27. Farokhi, F., Sandberg, H.: Fisher information as a measure of privacy: preserving privacy of households with smart meters using batteries. IEEE Trans. Smart Grid 9(5), 4726–4734 (2017)

    Article  Google Scholar 

  28. Feldman, V., Koren, T., Talwar, K.: Private stochastic convex optimization: optimal rates in linear time. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 439–449 (2020)

    Google Scholar 

  29. Geng, Q., Viswanath, P.: Optimal noise adding mechanisms for approximate differential privacy. IEEE Trans. Inf. Theory 62(2), 952–969 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27

    Chapter  Google Scholar 

  31. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377 (1982)

    Google Scholar 

  32. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guo, C., Karrer, B., Chaudhuri, K., van der Maaten, L.: Bounding training data reconstruction in private (deep) learning. arXiv preprint arXiv:2201.12383 (2022)

  34. Hannun, A., Guo, C., van der Maaten, L.: Measuring data leakage in machine-learning models with fisher information. In: Uncertainty in Artificial Intelligence, pp. 760–770. PMLR (2021)

    Google Scholar 

  35. Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 705–714 (2010)

    Google Scholar 

  36. Issa, I., Wagner, A.B., Kamath, S.: An operational approach to information leakage. IEEE Trans. Inf. Theory 66(3), 1625–1657 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  38. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  39. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  40. Makhdoumi, A., Salamatian, S., Fawaz, N., Médard, M.: From the information bottleneck to the privacy funnel. In: 2014 IEEE Information Theory Workshop (ITW 2014), pp. 501–505. IEEE (2014)

    Google Scholar 

  41. Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 263–275. IEEE (2017)

    Google Scholar 

  42. Moon, Y.I., Rajagopalan, B., Lall, U.: Estimation of mutual information using kernel density estimators. Phys. Rev. E 52(3), 2318 (1995)

    Article  Google Scholar 

  43. Murtagh, J., Vadhan, S.: The complexity of computing the optimal composition of differential privacy. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 157–175. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_7

    Chapter  MATH  Google Scholar 

  44. Nasr, M., Songi, S., Thakurta, A., Papemoti, N., Carlin, N.: Adversary instantiation: lower bounds for differentially private machine learning. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 866–882. IEEE (2021)

    Google Scholar 

  45. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_4

    Chapter  Google Scholar 

  46. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  48. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  49. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. J. ACM (JACM) 65(4), 1–26 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, pp. 32–47. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40956-4_3

    Chapter  Google Scholar 

  51. Stock, P., Shilov, I., Mironov, I., Sablayrolles, A.: Defending against reconstruction attacks with r\(\backslash \)’enyi differential privacy. arXiv preprint arXiv:2202.07623 (2022)

  52. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)

    Google Scholar 

  53. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  54. Wang, Y.X., Balle, B., Kasiviswanathan, S.P.: Subsampled rényi differential privacy and analytical moments accountant. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1226–1235. PMLR (2019)

    Google Scholar 

  55. Xiao, X., Tao, Y.: Output perturbation with query relaxation. Proc. VLDB Endowment 1(1), 857–869 (2008)

    Article  Google Scholar 

  56. Xu, A., Raginsky, M.: Information-theoretic analysis of generalization capability of learning algorithms. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  57. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning: analyzing the connection to overfitting. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282. IEEE (2018)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of DSTA Singapore, Cisco Systems, Capital One, and a MathWorks fellowship. We also thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanshen Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, H., Devadas, S. (2023). PAC Privacy: Automatic Privacy Measurement and Control of Data Processing. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14082. Springer, Cham. https://doi.org/10.1007/978-3-031-38545-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38545-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38544-5

  • Online ISBN: 978-3-031-38545-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics