Abstract
We propose and study a new privacy definition, termed Probably Approximately Correct (PAC) Privacy. PAC Privacy characterizes the information-theoretic hardness to recover sensitive data given arbitrary information disclosure/leakage during/after any processing. Unlike the classic cryptographic definition and Differential Privacy (DP), which consider the adversarial (input-independent) worst case, PAC Privacy is a simulatable metric that quantifies the instance-based impossibility of inference. A fully automatic analysis and proof generation framework is proposed: security parameters can be produced with arbitrarily high confidence via Monte-Carlo simulation for any black-box data processing oracle. This appealing automation property enables analysis of complicated data processing, where the worst-case proof in the classic privacy regime could be loose or even intractable. Moreover, we show that the produced PAC Privacy guarantees enjoy simple composition bounds and the automatic analysis framework can be implemented in an online fashion to analyze the composite PAC Privacy loss even under correlated randomness. On the utility side, the magnitude of (necessary) perturbation required in PAC Privacy is not lower bounded by \({\varTheta }(\sqrt{d})\) for a d-dimensional release but could be O(1) for many practical data processing tasks, which is in contrast to the input-independent worst-case information-theoretic lower bound. Example applications of PAC Privacy are included with comparisons to existing works.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Here, we say \(X_0\) and \(X'_0\) are adjacent if they only differ in one datapoint, i.e., their Hamming distance is 1.
- 2.
- 3.
In Theorem 9, we restrict the noise distribution to be Gaussian. We leave a generic lower bound for arbitrary noise distribution as an open problem.
- 4.
If each entry of X is independently generated, and \(\mathcal {M}\) satisfies \(\xi \)-Concentrated Differential Privacy (CDP), then \(\textsf{MI}(X; \mathcal {M}(X)) \le n\xi \) [13].
- 5.
An upper bound on individual sensitivity of Empirical Risk Minimization is only known for strongly-convex optimization [17] with an additional Lipschitz assumption and the loss function needs to be a sum of individual losses on each sample.
- 6.
Besides MI, there are many other efficient side-channel attacks based on different statistical tests such as Pearson correlation [12].
References
Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
Asi, H., Feldman, V., Koren, T., Talwar, K.: Private stochastic convex optimization: optimal rates in l1 geometry. In: International Conference on Machine Learning, pp. 393–403. PMLR (2021)
Asi, H., Feldman, V., Talwar, K.: Optimal algorithms for mean estimation under local differential privacy. arXiv preprint arXiv:2205.02466 (2022)
Balle, B., Barthe, G., Gaboardi, M.: Privacy amplification by subsampling: tight analyses via couplings and divergences. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Balle, B., Barthe, G., Gaboardi, M., Hsu, J., Sato, T.: Hypothesis testing interpretations and renyi differential privacy. In: International Conference on Artificial Intelligence and Statistics, pp. 2496–2506. PMLR (2020)
Bassily, R., Groce, A., Katz, J., Smith, A.: Coupled-worlds privacy: Exploiting adversarial uncertainty in statistical data privacy. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 439–448. IEEE (2013)
Bassily, R., Nissim, K., Smith, A., Steinke, T., Stemmer, U., Ullman, J.: Algorithmic stability for adaptive data analysis. In: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 1046–1059 (2016)
Bassily, R., Smith, A., Thakurta, A.: Private empirical risk minimization: efficient algorithms and tight error bounds. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer science, pp. 464–473. IEEE (2014)
Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291 (2011)
Belghazi, M.I., et al.: Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062 (2018)
Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., Thakurta, A.: Noiseless database privacy. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 215–232. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_12
Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2
Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 635–658. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_24
Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. In: Biocomputing 2000, pp. 418–429. World Scientific (1999)
Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_33
Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Probability of error in information-hiding protocols. In: 20th IEEE Computer Security Foundations Symposium (CSF 2007), pp. 341–354. IEEE (2007)
Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12(3), 1069–1109 (2011)
Chaudhuri, K., Sarwate, A., Sinha, K.: Near-optimal differentially private principal components. In: Advances in Neural Information Processing Systems, vol. 25 (2012)
Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications: a reality today, a challenge tomorrow. In: 2010 IEEE Symposium on Security and Privacy, pp. 191–206. IEEE (2010)
Cheng, P., Hao, W., Dai, S., Liu, J., Gan, Z., Carin, L.: Club: a contrastive log-ratio upper bound of mutual information. In: International Conference on Machine Learning, pp. 1779–1788. PMLR (2020)
Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 375–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_13
Cohen, A., Nissim, K.: Towards formalizing the GDPR’s notion of singling out. Proc. Natl. Acad. Sci. 117(15), 8344–8352 (2020)
Cover, T.M.: Elements of Information Theory. Wiley, Hoboken (1999)
Dong, J., Roth, A., Su, W.J.: Gaussian differential privacy. arXiv preprint arXiv:1905.02383 (2019)
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta, A.: Amplification by shuffling: From local to central differential privacy via anonymity. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–2479. SIAM (2019)
Farokhi, F., Sandberg, H.: Fisher information as a measure of privacy: preserving privacy of households with smart meters using batteries. IEEE Trans. Smart Grid 9(5), 4726–4734 (2017)
Feldman, V., Koren, T., Talwar, K.: Private stochastic convex optimization: optimal rates in linear time. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 439–449 (2020)
Geng, Q., Viswanath, P.: Optimal noise adding mechanisms for approximate differential privacy. IEEE Trans. Inf. Theory 62(2), 952–969 (2015)
Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27
Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377 (1982)
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Guo, C., Karrer, B., Chaudhuri, K., van der Maaten, L.: Bounding training data reconstruction in private (deep) learning. arXiv preprint arXiv:2201.12383 (2022)
Hannun, A., Guo, C., van der Maaten, L.: Measuring data leakage in machine-learning models with fisher information. In: Uncertainty in Artificial Intelligence, pp. 760–770. PMLR (2021)
Hardt, M., Talwar, K.: On the geometry of differential privacy. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 705–714 (2010)
Issa, I., Wagner, A.B., Kamath, S.: An operational approach to information leakage. IEEE Trans. Inf. Theory 66(3), 1625–1657 (2019)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Makhdoumi, A., Salamatian, S., Fawaz, N., Médard, M.: From the information bottleneck to the privacy funnel. In: 2014 IEEE Information Theory Workshop (ITW 2014), pp. 501–505. IEEE (2014)
Mironov, I.: Rényi differential privacy. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 263–275. IEEE (2017)
Moon, Y.I., Rajagopalan, B., Lall, U.: Estimation of mutual information using kernel density estimators. Phys. Rev. E 52(3), 2318 (1995)
Murtagh, J., Vadhan, S.: The complexity of computing the optimal composition of differential privacy. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 157–175. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_7
Nasr, M., Songi, S., Thakurta, A., Papemoti, N., Carlin, N.: Adversary instantiation: lower bounds for differentially private machine learning. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 866–882. IEEE (2021)
Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_4
Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)
Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)
Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)
Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol. J. ACM (JACM) 65(4), 1–26 (2018)
Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In: Dingledine, R. (ed.) PET 2003. LNCS, vol. 2760, pp. 32–47. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40956-4_3
Stock, P., Shilov, I., Mironov, I., Sablayrolles, A.: Defending against reconstruction attacks with r\(\backslash \)’enyi differential privacy. arXiv preprint arXiv:2202.07623 (2022)
Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv preprint physics/0004057 (2000)
Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
Wang, Y.X., Balle, B., Kasiviswanathan, S.P.: Subsampled rényi differential privacy and analytical moments accountant. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1226–1235. PMLR (2019)
Xiao, X., Tao, Y.: Output perturbation with query relaxation. Proc. VLDB Endowment 1(1), 857–869 (2008)
Xu, A., Raginsky, M.: Information-theoretic analysis of generalization capability of learning algorithms. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning: analyzing the connection to overfitting. In: 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282. IEEE (2018)
Acknowledgements
We gratefully acknowledge the support of DSTA Singapore, Cisco Systems, Capital One, and a MathWorks fellowship. We also thank the anonymous reviewers for their helpful comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Xiao, H., Devadas, S. (2023). PAC Privacy: Automatic Privacy Measurement and Control of Data Processing. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14082. Springer, Cham. https://doi.org/10.1007/978-3-031-38545-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-38545-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38544-5
Online ISBN: 978-3-031-38545-2
eBook Packages: Computer ScienceComputer Science (R0)