Skip to main content

Anamorphic Signatures: Secrecy from a Dictator Who Only Permits Authentication!

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14082))

Included in the following conference series:

  • 1675 Accesses

Abstract

The goal of this research is to raise technical doubts regarding the usefulness of the repeated attempts by governments to curb Cryptography (aka the “Crypto Wars”), and argue that they, in fact, cause more damage than adding effective control. The notion of Anamorphic Encryption was presented in Eurocrypt’22 for a similar aim. There, despite the presence of a Dictator who possesses all keys and knows all messages, parties can arrange a hidden “anamorphic” message in an otherwise indistinguishable from regular ciphertexts (wrt the Dictator).

In this work, we postulate a stronger cryptographic control setting where encryption does not exist (or is neutralized) since all communication is passed through the Dictator in, essentially, cleartext mode (or otherwise, when secure channels to and from the Dictator are the only confidentiality mechanism). Messages are only authenticated to assure recipients of the identity of the sender. We ask whether security against the Dictator still exists, even under such a strict regime which allows only authentication (i.e., authenticated/ signed messages) to pass end-to-end, and where received messages are determined by/ known to the Dictator, and the Dictator also eventually gets all keys to verify compliance of past signing. To frustrate the Dictator, this authenticated message setting gives rise to the possible notion of anamorphic channels inside signature and authentication schemes, where parties attempt to send undetectable secure messages (or other values) using signature tags which are indistinguishable from regular tags. We define and present implementation of schemes for anamorphic signature and authentication; these are applicable to existing and standardized signature and authentication schemes which were designed independently of the notion of anamorphic messages. Further, some cornerstone constructions of the foundations of signatures, in fact, introduce anamorphism.

The extended version of this paper, including extra results and proofs, is available as [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to signatures via the Fiat-Shamir transform: minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_28

    Chapter  Google Scholar 

  2. Beth, T.: Efficient zero-knowledge identification scheme for smart cards. In: Günther, C.G. (ed.) EUROCRYPT’88. LNCS, vol. 330, pp. 77–84. Springer, Heidelberg (1988)

    Google Scholar 

  3. Brickell, E.F., McCurley, K.S.: An interactive identification scheme based on discrete logarithms and factoring. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 63–71. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46877-3_6

    Chapter  Google Scholar 

  4. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_13

    Chapter  Google Scholar 

  5. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7

    Chapter  Google Scholar 

  6. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  7. Davies, D.W.: Applying the RSA digital signature to electronic mail. Computer 16(2), 55–62 (1983)

    Article  Google Scholar 

  8. Digital Signature Standard (DSS). National Institute of Standards and Technology (NIST), FIPS PUB 186–4, U.S. Department of Commerce, July (2013)

    Google Scholar 

  9. Durumeric, Z., et al.: The security impact of HTTPS interception. In: NDSS 2017. The Internet Society, February/March (2017)

    Google Scholar 

  10. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

    Chapter  Google Scholar 

  11. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  12. Girault, M.: An identity-based identification scheme based on discrete logarithms modulo a composite number (rump session). In: Damgård, I. (ed.) EUROCRYPT’90. LNCS, vol. 473, pp. 481–486. Springer, Heidelberg (1991)

    Google Scholar 

  13. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design (extended abstract). In: 27th FOCS, pages 174–187. IEEE Computer Society Press, October (1986)

    Google Scholar 

  14. Goyal, R., Kim, S., Manohar, N., Waters, B., David, J.W.: Watermarking public-key cryptographic primitives. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. Part III, volume 11694 of LNCS, pp. 367–398. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8_12

    Chapter  Google Scholar 

  15. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical’’ indentity-based signature scheme resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 216–231. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_16

    Chapter  Google Scholar 

  16. Hopper, N., Molnar, D., Wagner, D.: From weak to strong watermarking. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 362–382. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_20

    Chapter  Google Scholar 

  17. Kutyłowski, M., Persiano, G., Hieu Phan, D., Yung, M., Zawada, M.: Anamorphic signatures: secrecy from a dictator who only permits authentication! Cryptology ePrint Archive, Report 2023/356 (2023). https://eprint.iacr.org/2023/356

  18. Lamport, L.: Constructing digital signatures from a one-way function. Technical Report SRI-CSL-98, SRI International Computer Science Laboratory, October (1979)

    Google Scholar 

  19. Micali, S., Shamir, A.: An improvement of the Fiat-Shamir identification and signature scheme. In: Goldwasser, S. (ed.) CRYPTO’88. LNCS, vol. 403, pp. 244–247. Springer, Heidelberg (1990)

    Google Scholar 

  20. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May (1989)

    Google Scholar 

  21. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO’92. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3

    Chapter  Google Scholar 

  22. Ong, H., Schnorr, C.P.: Fast signature generation with a Fiat Shamir — like scheme. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 432–440. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46877-3_38

    Chapter  Google Scholar 

  23. Persiano, G., Hieu Phan, D., Yung, M.: Anamorphic encryption: private communication against a dictator. In: Dunkelman, O., Dziembowski, S., editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pp. 34–63. Springer, Heidelberg, May/June (2022). https://doi.org/10.1007/978-3-031-07085-3_2

  24. Pointcheval, D.: A new identification scheme based on the perceptrons problem. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT’95. LNCS, vol. 921, pp. 319–328. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_26

    Chapter  Google Scholar 

  25. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_33

    Chapter  Google Scholar 

  26. Rivest, R.L.: Chaffing and Winnowing: confidentiality without encryption (1998). https://people.csail.mit.edu/rivest/pubs/Riv98a.prepub.txt

  27. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd ACM STOC, pp. 387–394. ACM Press, May (1990)

    Google Scholar 

  28. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_2

    Chapter  Google Scholar 

  29. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D., editor, CRYPTO’83, pp. 51–67. Plenum Press, New York, USA (1983)

    Google Scholar 

  31. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2

    Chapter  Google Scholar 

  32. Young, A., Yung, M.: The dark side of “Black-Box’’ cryptography or: should we trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_8

    Chapter  Google Scholar 

Download references

Acknowledgment

The first and the last author have been supported by the National Centre for Research and Development (Warsaw), project ESCAPE PL-TW/VII/5/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Kutyłowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kutyłowski, M., Persiano, G., Phan, D.H., Yung, M., Zawada, M. (2023). Anamorphic Signatures: Secrecy from a Dictator Who Only Permits Authentication!. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14082. Springer, Cham. https://doi.org/10.1007/978-3-031-38545-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38545-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38544-5

  • Online ISBN: 978-3-031-38545-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics