Abstract
Succinct arguments that rely on the Merkle-tree paradigm introduced by Kilian (STOC 92) suffer from larger proof sizes in practice due to the use of generic cryptographic primitives. In contrast, succinct arguments with the smallest proof sizes in practice exploit homomorphic commitments. However these latter are quantum insecure, unlike succinct arguments based on the Merkle-tree paradigm.
A recent line of works seeks to address this limitation, by constructing quantum-safe succinct arguments that exploit lattice-based commitments. The eventual goal is smaller proof sizes than those achieved via the Merkle-tree paradigm. Alas, known constructions lack succinct verification.
In this paper, we construct the first interactive argument system for NP with succinct verification that, departing from the Merkle-tree paradigm, exploits the homomorphic properties of lattice-based commitments. For an arithmetic circuit with N gates, our construction achieves verification time \(\textsf{polylog}(N)\) based on the hardness of the Ring Short-Integer-Solution (RSIS) problem.
The core technique in our construction is a delegation protocol built from commitment schemes based on leveled bilinear modules, a new notion that we deem of independent interest. We show that leveled bilinear modules can be realized from pre-quantum and from post-quantum cryptographic assumptions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Of course, in our lattice instantiation, \(M_{\scriptscriptstyle \textrm{R},i}\) and \(M_{\scriptscriptstyle \textrm{T},i}\) happen to be the same.
- 2.
In more detail, consider a cyclotomic ring of the form \(R:=\mathbb {Z}[X]/\langle \varPhi _{d}(X)\rangle \) where \(\varPhi _{d}(X)\) is the \(d\)-th cyclotomic polynomial. The polynomial \(\varPhi _{d}(X)\) modulo a prime p with \(\gcd (p, d) = 1\) factors into irreducible polynomials of the same degree \(t\) for some \(t\in \mathbb {N}\) (e.g., from [31, Theorem 5.3]). This means that \(R/ pR\) is isomorphic to \(k:=\phi (d) / t\) copies of \(\mathbb {F}_{p^t}\).
- 3.
This is despite the fact that the PIOP construction in full generality sometimes uses non-algebraic operations such as linear scans.
References
URL: https://sphincs.org/
Albrecht, M.R., Lai, R.W.F.: Subtractive sets over cyclotomic rings: limits of Schnorr-like arguments over lattices. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 519–548. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_18
Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.: Lattice-based SNARKs: publicly verifiable, preprocessing, and recursively composable. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 102–132. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_4
Attema, T., Cramer, R., Kohl, L.: A compressed \(\varSigma \)-protocol theory for lattices. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 549–579. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_19
Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice commitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_17
Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_23
Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_2
Ben-Sasson, E., et al.: Aurora: transparent succinct arguments for R1CS. In: Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques. EUROCRYPT’19, pp. 103–128 (2019). Full version available at https://eprint.iacr.org/2018/828
Ben-Sasson, E., et al.: Fast Reed-Solomon interactive oracle proofs of proximity. In: Proceedings of the 45th International Colloquium on Automata, Languages and Programming. ICALP’18, pp. 14:1–14:17 (2018)
Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.: Linear-size constant-query IOPs for delegating computation. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 494–521. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_19
Beullens, W., Seiler, G.: LaBRADOR: compact proofs for R1CS from module - SIS (2022)
Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_18
Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-knowledge arguments with (almost) minimal time and space overheads. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 168–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_7
Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_5
Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_9
Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_8
Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_2
Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge succinct arguments with a linear-time prover. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 275–304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_10
Bootle, J., Chiesa, A., Sotiraki, K.: Sumcheck arguments and their applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 742–773. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_26
Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7
Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 441–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_16
Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Bünz, B., et al.: Bulletproofs: short proofs for confidential transactions and more. In: Proceedings of the 39th IEEE Symposium on Security and Privacy. S &P’18, pp. 315–334 (2018)
Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new CLT multilinear map over the integers. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_20
Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27
Chiesa, A., et al.: Post-quantum succinct arguments: breaking the quantum rewinding barriers. In: Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer Science. FOCS’21 (2021)
Conrad, K.: Cyclotomic Extensions (2013). https://kconrad.math.uconn.edu/math5211s13/handouts/cyclotomic.pdf
Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_13
Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_26
Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multilinear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_21
Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Zeroizing attacks on indistinguishability obfuscation over CLT13. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 41–58. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_3
Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_12
Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_9
Esgin, M.F., Steinfeld, R., Zhao, R.K.: MatRiCT+: More efficient post-quantum private blockchain payments. In: Proceedings of the 43rd IEEE Symposium on Security and Privacy, SP’22, pp. 1281–1298 (2022)
Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_4
Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_1
Gennaro, R., et al.: Lattice-based zk-SNARKs from square span programs. In: Proceedings of the 25th ACM Conference on Computer and Communications Security. CCS’18, pp. 556–573 (2018)
Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_20
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing. STOC’11, pp. 99–108 (2011)
Golovnev, A., et al.: Brakedown: linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/1043, p. 21 (2021)
Groth, J.: Efficient zero-knowledge arguments from two-tiered homomorphic commitments. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 431–448. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_23
Ishai, Y., Su, H., Wu, D.J.: Shorter and faster post-quantum designated-verifier zkSNARKs from lattices. In: Proceedings of the 28th ACM Conference on Computer and Communications Security. CCS’21, pp. 212–234 (2021)
Kilian., J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing. STOC’92, pp. 723–732 (1992)
Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilinear group arithmetic: practical structure-preserving cryptography. In: Proceedings of the 26th ACM Conference on Computer and Communications Security. CCS’19, pp. 2057–2074 (2019)
Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_14
Lee, J.: Dory: efficient, transparent arguments for generalised inner products and polynomial commitments. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 1–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_1
Lee, J., et al.: Linear-time zero-knowledge SNARKs for R1CS. Cryptology ePrint Archive, Report 2021/030 (2021)
Lund, C., et al.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)
Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 71–101. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_3
Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge proofs for integer relations. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. CCS’20, pp. 1051–1070 (2020)
Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal lattices with applications to ring signatures and confidential transactions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 611–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_21
Ma, F., Zhandry, M.: The MMap strikes back: obfuscation and new multilinear maps immune to CLT13 zeroizing attacks. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp. 513–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6_19
NIST. Post-Quantum Cryptography (2016). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
Nguyen, N.K., Seiler, G.: Practical sublinear proofs for R1CS from lattices. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 133–162. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_5
Nitulescu, A.: Lattice-based zero-knowledge SNARGs for arithmetic circuits. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 217–236. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_11
del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: Proceedings of the 25th Conference on Computer and Communications Security. CCS’18, pp. 574–591 (2018)
del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and ring-LWE ciphertexts. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 344–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_12
Reingold, O., Rothblum, G., Rothblum, R.: Constant-round interactive proofs for delegating computation. SIAM J. Comput. 50(3) (2021). Preliminary version appeared in STOC’16
Ron-Zewi, N., Rothblum, R.D.: Proving as fast as computing: succinct arguments with constant prover overhead. In: Proceedings of the 54th Annual ACM Symposium on Theory of Computing. STOC’22, pp. 1353–1363 (2022)
Thaler, J.: Proofs, arguments, and zero-knowledge. Unpublished manuscript (2022). https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
Xie, T., Zhang, Y., Song, D.: Orion: zero knowledge proof with linear prover time. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 299–328. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_11
Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based zero-knowledge arguments with standard soundness: construction and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Bootle, J., Chiesa, A., Sotiraki, K. (2023). Lattice-Based Succinct Arguments for NP with Polylogarithmic-Time Verification. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14082. Springer, Cham. https://doi.org/10.1007/978-3-031-38545-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-38545-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38544-5
Online ISBN: 978-3-031-38545-2
eBook Packages: Computer ScienceComputer Science (R0)