Skip to main content

HERMES: Efficient Ring Packing Using MLWE Ciphertexts and Application to Transciphering

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14084))

Included in the following conference series:

  • 1449 Accesses

Abstract

Most of the current fully homomorphic encryption (FHE) schemes are based on either the learning-with-errors (LWE) problem or on its ring variant (RLWE) for storing plaintexts. During the homomorphic computation of FHE schemes, RLWE formats provide high throughput when considering several messages, and LWE formats provide a low latency when there are only a few messages. Efficient conversion can bridge the advantages of each format. However, converting LWE formats into RLWE format, which is called ring packing, has been a challenging problem.

We propose an efficient solution for ring packing for FHE. The main improvement of this work is twofold. First, we accelerate the existing ring packing methods by using bootstrapping and ring switching techniques, achieving practical runtimes. Second, we propose a new method for efficient ring packing, HERMES, by using ciphertexts in Module-LWE (MLWE) formats, to also reduce the memory. To this end, we generalize the tools of LWE and RLWE formats for MLWE formats.

On a single-thread implementation, HERMES consumes 10.2s for the ring packing of \(2^{15}\) LWE-format ciphertexts into an RLWE-format ciphertext. This gives 41x higher throughput compared to the state-of-the-art ring packing for FHE, PEGASUS [S &P’21], which takes 51.7s for packing \(2^{12}\) LWE ciphertexts with similar homomorphic capacity. We also illustrate the efficiency of HERMES by using it for transciphering from LWE symmetric encryption to CKKS fully homomorphic encryption, significantly outperforming the recent proposals HERA [Asiacrypt’21] and Rubato [Eurocrypt’22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bae, Y., Cheon, J.H., Cho, W., Kim, J., Kim, T.: META-BTS: bootstrapping precision beyond the limit. In: CCS (2022)

    Google Scholar 

  2. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: CHIMERA: combining ring-LWE-based fully homomorphic encryption schemes. J. Math. Cryptol. (2020)

    Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (2014)

    Google Scholar 

  4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  5. Bossuat, J.-P., Troncoso-Pastoriza, J., Hubaux, J.-P.: Bootstrapping for approximate homomorphic encryption with negligible failure-probability by using sparse-secret encapsulation. In: Ateniese, G., Venturi, D. (eds.) ACNS 2022. LNCS, vol. 13269, pp. 521–541. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_26

  6. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between (ring) LWE ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp. 460–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3_18

    Chapter  Google Scholar 

  7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

    Chapter  MATH  Google Scholar 

  8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_14

    Chapter  Google Scholar 

  9. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate homomorphic encryption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 360–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_14

    Chapter  Google Scholar 

  10. Cho, J., et al.: Transciphering framework for approximate homomorphic encryption. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 640–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_22

    Chapter  Google Scholar 

  11. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  12. CryptoLab.inc. HEaaN private AI: Homomorphic encryption library

    Google Scholar 

  13. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  14. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption (2012). http://eprint.iacr.org/2012/144

  15. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homomorphic encryption. J. Comput. Secur. 21, 663–684 (2013)

    Article  MATH  Google Scholar 

  16. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. Better bootstrapping for approximate homomorphic encryption., vol. 12006, pp. 364–390. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_16

    Chapter  Google Scholar 

  17. J. Ha, S. Kim, B. Lee, J. Lee, and M. Son. Rubato: Noisy ciphers for approximate homomorphic encryption. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13275, pp. 581–610 (2022). https://doi.org/10.1007/978-3-031-06944-4_20

  18. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31

    Chapter  MATH  Google Scholar 

  19. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 93–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_4

    Chapter  MATH  Google Scholar 

  20. Halevi, S., Shoup, V.: Bootstrapping for HElib. J. Cryptol. 34, 7 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, J., et al.: ARK: fully homomorphic encryption accelerator with runtime data generation and inter-operation key reuse. In: MICRO (2022)

    Google Scholar 

  22. Lu, W.-J., Huang, Z., Hong, C., Ma, Y., Qu, H.: PEGASUS: bridging polynomial and non-polynomial evaluations in homomorphic encryption. In: S &P (2021)

    Google Scholar 

  23. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  24. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Crypt. 75(3), 565–599 (2014). https://doi.org/10.1007/s10623-014-9938-4

    Article  MathSciNet  MATH  Google Scholar 

  25. Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: ICALP 2018 (2018)

    Google Scholar 

  26. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: CCSW 2011 (2011)

    Google Scholar 

  27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (2009)

    Google Scholar 

  28. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    Chapter  Google Scholar 

Download references

Acknowledgment

The research corresponding to this work was conducted while the fourth author was visiting CryptoLab Inc. as an intern student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bae, Y., Cheon, J.H., Kim, J., Park, J.H., Stehlé, D. (2023). HERMES: Efficient Ring Packing Using MLWE Ciphertexts and Application to Transciphering. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14084. Springer, Cham. https://doi.org/10.1007/978-3-031-38551-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38551-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38550-6

  • Online ISBN: 978-3-031-38551-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics