Abstract
Lattice gadgets and the associated algorithms are the essential building blocks of lattice-based cryptography. In the past decade, they have been applied to build versatile and powerful cryptosystems. However, the practical optimizations and designs of gadget-based schemes generally lag their theoretical constructions. For example, the gadget-based signatures have elegant design and capability of extending to more advanced primitives, but they are far less efficient than other lattice-based signatures.
This work aims to improve the practicality of gadget-based cryptosystems, with a focus on hash-and-sign signatures. To this end, we develop a compact gadget framework in which the used gadget is a square matrix instead of the short and fat one used in previous constructions. To work with this compact gadget, we devise a specialized gadget sampler, called semi-random sampler, to compute the approximate preimage. It first deterministically computes the error and then randomly samples the preimage. We show that for uniformly random targets, the preimage and error distributions are simulatable without knowing the trapdoor. This ensures the security of the signature applications. Compared to the Gaussian-distributed errors in previous algorithms, the deterministic errors have a smaller size, which lead to a substantial gain in security and enables a practically working instantiation.
As the applications, we present two practically efficient gadget-based signature schemes based on NTRU and Ring-LWE respectively. The NTRU-based scheme offers comparable efficiency to Falcon and Mitaka and a simple implementation without the need of generating the NTRU trapdoor. The LWE-based scheme also achieves a desirable overall performance. It not only greatly outperforms the state-of-the-art LWE-based hash-and-sign signatures, but also has an even smaller size than the LWE-based Fiat-Shamir signature scheme Dilithium. These results fill the long-term gap in practical gadget-based signatures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Such remarkable lattices are listed in [DvW22].
- 2.
References
Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_1
Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)
Babai, L.: On lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)
Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring lwe. In: ITCS 2016, pp. 147–156 (2016)
Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: ASIACRYPT 2019, pp. 3–32 (2019). https://doi.org/10.1007/978-3-030-34618-8_1
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 608–637. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_21
Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2
Ducas, L., Nguyen, P.Q.: learning a zonotope and more: Cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_27
Ducas, L., Prest, T.: Fast fourier orthogonalization. In: ISSAC 2016, pp. 191–198 (2016)
Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_1
Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. In: EUROCRYPT 2022, pp. 643–673 (2022). https://doi.org/10.1007/978-3-031-07082-2_23
Espitau, T., et al.: MITAKA: a simpler, parallelizable. maskable variant of. In EUROCRYPT 2022, 222–253 (2022). https://doi.org/10.1007/978-3-031-07082-2_9
Espitau, T., Tibouchi, M., Wallet, A., Yang, Yu.: Shorter hash-and-sign lattice-based signatures. In: CRYPTO 2022, pp. 245–275 (2022). https://doi.org/10.1007/978-3-031-15979-4_9
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)
Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231
Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic encryption for finite automata. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 473–502. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_17
Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23
Genise, N., Micciancio, D.: Faster gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_7
Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 655–684. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_23
Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete gaussian and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_21
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In STOC 2008, pp. 197–206 (2008)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC 2013, pp. 545–554 (2013)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: digital signatures using the NTRU lattice. In: CT-RSA 2003, pp. 122–140 (2003)
Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.: Choosing parameters for ntruencrypt. In: CT-RSA 2017, pp. 3–18 (2017)
Jia, H., Yupu, H., Tang, C.: Lattice-based hash-and-sign signatures using approximate trapdoor, revisited. IET Inf. Secur. 16(1), 41–50 (2022)
Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_1
Lyubashevsky, V.: Dilithium: Submission to the NIST’s post-quantum cryptography standardization process (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)
NIST. NIST: Security requirements for cryptographic modules. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_17
Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5
Prest, T.: Falcon: Submission to the NIST’s post-quantum cryptography standardization process (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Prest, T.: Gaussian Sampling in Lattice-Based Cryptography. PhD thesis, PhD thesis, École Normale Supérieure Paris 2015 (2015)
Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi divergence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 347–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_13
Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (Plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4
Schwabe, P.: Kyber: Submission to the NIST’s post-quantum cryptography standardization process (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
Yu, Y., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 525–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_18
Yu, Y., Jia, H., Wang, X.: Compact lattice gadget and its applications to hash-and-sign signatures. Cryptology ePrint Archive, Paper 2023/729 (2023). https://eprint.iacr.org/2023/729
Zhang, S., Yang, Y.: Towards a simpler lattice gadget toolkit. In: PKC 2022, pp. 498–520 (2022)
Acknowledgements
We would like to thank Léo Ducas and the anonymous reviewers for helpful comments and suggestions. This work is supported by the National Key Research and Development Program of China (Grant No. 2021YFB3100200), the National Natural Science Foundation of China (Grant No. 62102216, 12171114), the Mathematical Tianyuan Fund of the National Natural Science Foundation of China (Grant No. 12226006), the National Key Research and Development Program of China (Grant No. 2018YFA0704701), the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008), Major Scientific and Technological Innovation Project of Shandong Province, China (Grant No. 2019JZZY010133), Shandong Key Research and Development Program (Grant No. 2020ZLYS09) and National key research and development program(Grant No. 2022YFB2702804).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Yu, Y., Jia, H., Wang, X. (2023). Compact Lattice Gadget and Its Applications to Hash-and-Sign Signatures. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-3-031-38554-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-38554-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38553-7
Online ISBN: 978-3-031-38554-4
eBook Packages: Computer ScienceComputer Science (R0)