Skip to main content

Compact Lattice Gadget and Its Applications to Hash-and-Sign Signatures

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14085))

Included in the following conference series:

Abstract

Lattice gadgets and the associated algorithms are the essential building blocks of lattice-based cryptography. In the past decade, they have been applied to build versatile and powerful cryptosystems. However, the practical optimizations and designs of gadget-based schemes generally lag their theoretical constructions. For example, the gadget-based signatures have elegant design and capability of extending to more advanced primitives, but they are far less efficient than other lattice-based signatures.

This work aims to improve the practicality of gadget-based cryptosystems, with a focus on hash-and-sign signatures. To this end, we develop a compact gadget framework in which the used gadget is a square matrix instead of the short and fat one used in previous constructions. To work with this compact gadget, we devise a specialized gadget sampler, called semi-random sampler, to compute the approximate preimage. It first deterministically computes the error and then randomly samples the preimage. We show that for uniformly random targets, the preimage and error distributions are simulatable without knowing the trapdoor. This ensures the security of the signature applications. Compared to the Gaussian-distributed errors in previous algorithms, the deterministic errors have a smaller size, which lead to a substantial gain in security and enables a practically working instantiation.

As the applications, we present two practically efficient gadget-based signature schemes based on NTRU and Ring-LWE respectively. The NTRU-based scheme offers comparable efficiency to Falcon and Mitaka and a simple implementation without the need of generating the NTRU trapdoor. The LWE-based scheme also achieves a desirable overall performance. It not only greatly outperforms the state-of-the-art LWE-based hash-and-sign signatures, but also has an even smaller size than the LWE-based Fiat-Shamir signature scheme Dilithium. These results fill the long-term gap in practical gadget-based signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such remarkable lattices are listed in [DvW22].

  2. 2.

    https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf.

References

  1. Agrawal, S.: Stronger security for reusable garbled circuits, general definitions and attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 3–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_1

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)

    Google Scholar 

  3. Babai, L.: On lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    Article  MathSciNet  Google Scholar 

  4. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring lwe. In: ITCS 2016, pp. 147–156 (2016)

    Google Scholar 

  5. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: ASIACRYPT 2019, pp. 3–32 (2019). https://doi.org/10.1007/978-3-030-34618-8_1

  6. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  7. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 608–637. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_21

    Chapter  Google Scholar 

  8. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2

    Chapter  Google Scholar 

  9. Ducas, L., Nguyen, P.Q.: learning a zonotope and more: Cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_27

    Chapter  Google Scholar 

  10. Ducas, L., Prest, T.: Fast fourier orthogonalization. In: ISSAC 2016, pp. 191–198 (2016)

    Google Scholar 

  11. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_1

    Chapter  Google Scholar 

  12. Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. In: EUROCRYPT 2022, pp. 643–673 (2022). https://doi.org/10.1007/978-3-031-07082-2_23

  13. Espitau, T., et al.: MITAKA: a simpler, parallelizable. maskable variant of. In EUROCRYPT 2022, 222–253 (2022). https://doi.org/10.1007/978-3-031-07082-2_9

  14. Espitau, T., Tibouchi, M., Wallet, A., Yang, Yu.: Shorter hash-and-sign lattice-based signatures. In: CRYPTO 2022, pp. 245–275 (2022). https://doi.org/10.1007/978-3-031-15979-4_9

  15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)

    Google Scholar 

  16. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

    Chapter  Google Scholar 

  17. Genise, N., Gentry, C., Halevi, S., Li, B., Micciancio, D.: Homomorphic encryption for finite automata. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 473–502. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_17

    Chapter  Google Scholar 

  18. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23

    Chapter  Google Scholar 

  19. Genise, N., Micciancio, D.: Faster gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_7

    Chapter  Google Scholar 

  20. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 655–684. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_23

    Chapter  Google Scholar 

  21. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete gaussian and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_21

    Chapter  Google Scholar 

  22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  23. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC 2013, pp. 545–554 (2013)

    Google Scholar 

  24. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25

    Chapter  Google Scholar 

  25. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: digital signatures using the NTRU lattice. In: CT-RSA 2003, pp. 122–140 (2003)

    Google Scholar 

  26. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.: Choosing parameters for ntruencrypt. In: CT-RSA 2017, pp. 3–18 (2017)

    Google Scholar 

  27. Jia, H., Yupu, H., Tang, C.: Lattice-based hash-and-sign signatures using approximate trapdoor, revisited. IET Inf. Secur. 16(1), 41–50 (2022)

    Article  Google Scholar 

  28. Kirchner, P., Fouque, P.-A.: Revisiting lattice attacks on overstretched NTRU parameters. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_1

    Chapter  Google Scholar 

  29. Lyubashevsky, V.: Dilithium: Submission to the NIST’s post-quantum cryptography standardization process (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  31. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  32. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  33. NIST. NIST: Security requirements for cryptographic modules. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

  34. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_17

    Chapter  Google Scholar 

  35. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5

    Chapter  Google Scholar 

  36. Prest, T.: Falcon: Submission to the NIST’s post-quantum cryptography standardization process (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  37. Prest, T.: Gaussian Sampling in Lattice-Based Cryptography. PhD thesis, PhD thesis, École Normale Supérieure Paris 2015 (2015)

    Google Scholar 

  38. Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi divergence. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 347–374. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_13

    Chapter  Google Scholar 

  39. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (Plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4

    Chapter  Google Scholar 

  40. Schwabe, P.: Kyber: Submission to the NIST’s post-quantum cryptography standardization process (2020). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  41. Yu, Y., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 525–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_18

    Chapter  Google Scholar 

  42. Yu, Y., Jia, H., Wang, X.: Compact lattice gadget and its applications to hash-and-sign signatures. Cryptology ePrint Archive, Paper 2023/729 (2023). https://eprint.iacr.org/2023/729

  43. Zhang, S., Yang, Y.: Towards a simpler lattice gadget toolkit. In: PKC 2022, pp. 498–520 (2022)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Léo Ducas and the anonymous reviewers for helpful comments and suggestions. This work is supported by the National Key Research and Development Program of China (Grant No. 2021YFB3100200), the National Natural Science Foundation of China (Grant No. 62102216, 12171114), the Mathematical Tianyuan Fund of the National Natural Science Foundation of China (Grant No. 12226006), the National Key Research and Development Program of China (Grant No. 2018YFA0704701), the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008), Major Scientific and Technological Innovation Project of Shandong Province, China (Grant No. 2019JZZY010133), Shandong Key Research and Development Program (Grant No. 2020ZLYS09) and National key research and development program(Grant No. 2022YFB2702804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwen Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Y., Jia, H., Wang, X. (2023). Compact Lattice Gadget and Its Applications to Hash-and-Sign Signatures. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-3-031-38554-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38554-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38553-7

  • Online ISBN: 978-3-031-38554-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics