Skip to main content

Efficient Hybrid Exact/Relaxed Lattice Proofs and Applications to Rounding and VRFs

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14085))

Included in the following conference series:

Abstract

In this work, we study hybrid exact/relaxed zero-knowledge proofs from lattices, where the proved relation is exact in one part and relaxed in the other. Such proofs arise in important real-life applications such as those requiring verifiable PRF evaluation and have so far not received significant attention as a standalone problem.

We first introduce a general framework, \(\mathsf {LANES^+}\), for realizing such hybrid proofs efficiently by combining standard relaxed proofs of knowledge \(\textsf{RPoK}\) and the \(\textsf{LANES}\) framework (due to a series of works in Crypto’20, Asiacrypt’20, ACM CCS’20). The latter framework is a powerful lattice-based proof system that can prove exact linear and multiplicative relations. The advantage of \(\mathsf {LANES^+}\) is its ability to realize hybrid proofs more efficiently by exploiting \(\textsf{RPoK}\) for the high-dimensional part of the secret witness while leaving a low-dimensional secret witness part for the exact proof that is proven at a significantly lower cost via \(\textsf{LANES}\). Thanks to the flexibility of \(\mathsf {LANES^+}\), other exact proof systems can also be supported.

We apply our \(\mathsf {LANES^+}\) framework to construct substantially shorter proofs of rounding, which is a central tool for verifiable deterministic lattice-based cryptography. Based on our rounding proof, we then design an efficient long-term verifiable random function (VRF), named \(\textsf{LaV}\). \(\textsf{LaV}\) leads to the shortest VRF outputs among the proposals of standard (i.e., long-term and stateless) VRFs based on quantum-safe assumptions. Of independent interest, we also present generalized results for challenge difference invertibility, a fundamental soundness security requirement for many proof systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Even the optimized proof of 1024-dimensional LWE samples with ternary secret and error (i.e., \(\textbf{s},\textbf{e}\in \{-1,0,1\}^{1024}\)) in [47] is at 33 KB. The magnitude of rounding error coefficients needs to be bigger for a VRF to circumvent algebraic attacks.

  2. 2.

    The polynomials need to obey certain restrictions depending on the structure of the underlying ring \(\mathcal {R}_{q,d}\), which is explained formally in Sect. 2.4.

  3. 3.

    Note that in this case, we need to hide \(\textbf{w}:=\textbf{Ay}\). Otherwise, everyone could compute \(\textbf{t} - \textbf{w} = \textbf{Bm}\), which leaks information on the secret \(\textbf{m}\).

  4. 4.

    We note here that for \(l<d\), the proved relations actually hold over \(\mathbb {F}_{q^{d/l}}\). However, with a shortness proof of the form \(P_i(x)=\prod _{j\in [\beta ]} (x-j)\) for some \(\beta <q\in \mathbb {Z}^+\), the proved relation is restricted to \(\mathbb {Z}_q\subseteq \mathbb {F}_{q^{d/l}}\). This is explained further in [24, App. A]. We have such a shortness proof for all of our applications in this work, and therefore, our description is focused on \(\mathbb {Z}_q\).

  5. 5.

    We note here that one does not necessarily need to consider positive ranges \([0,T-1]\). It is straightforward to “shift” the range to support a more general range [ab] with \(a\le b \in \mathbb {Z}\). For example, proving knowledge of \({\overrightarrow{m}}\in [a,b]^N\) with \(\textbf{A}{\overrightarrow{m}} = {\overrightarrow{u}}\) is equivalent to proving knowledge of \({\overrightarrow{m}}'\in [0,b-a]^N\) such that \(\textbf{A}{\overrightarrow{m}}' = {\overrightarrow{u}}' \) for \({\overrightarrow{u}}':={\overrightarrow{u}} - \textbf{A}{\overrightarrow{a}}^N \) and \({\overrightarrow{a}}^N:= (a,\ldots ,a)\in \mathbb {Z}^N\). Hence, the important part is the width, T, of the range.

References

  1. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Algebraic algorithms for LWE problems. ACM Commun. Comput. Algebra 49(2), 62 (2015)

    Article  Google Scholar 

  2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015). https://bitbucket.org/malb/lwe-estimator/src/master/

  3. Attema, T., Lyubashevsky, V., Seiler, G.: Practical product proofs for lattice commitments. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 470–499. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_17

    Chapter  Google Scholar 

  4. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2

    Chapter  Google Scholar 

  5. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20

    Chapter  Google Scholar 

  6. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  7. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20

    Chapter  Google Scholar 

  8. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: ACM CCS, pp. 390–399. ACM (2006)

    Google Scholar 

  9. Ben-Sasson, E., et al.: Zerocash: Decentralized anonymous payments from bitcoin. In: IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society (2014)

    Google Scholar 

  10. Bitansky, N.: Verifiable random functions from non-interactive witness-indistinguishable proofs. J. Cryptol. 33(2), 459–493 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23

    Chapter  Google Scholar 

  12. Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7

    Chapter  Google Scholar 

  13. Buser, M., et al.: Post-quantum verifiable random function from symmetric primitives in pos blockchain. IACR Cryptology ePrint Archive, Paper 2021/302 (2021)

    Google Scholar 

  14. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the clonewars: efficient periodic n-times anonymous authentication. In: ACM CCS, pp. 201–210. ACM (2006)

    Google Scholar 

  15. Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental databases. In: ACM CCS, pp. 1467–1479. ACM (2015)

    Google Scholar 

  16. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503. ACM (2002)

    Google Scholar 

  17. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theor. Comput. Sci. 777, 155–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chiesa, A., Green, M., Liu, J., Miao, P., Miers, I., Mishra, P.: Decentralized anonymous micropayments. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 609–642. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_21

    Chapter  Google Scholar 

  19. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_28

    Chapter  Google Scholar 

  20. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: ACM CCS, pp. 574–591. ACM (2018)

    Google Scholar 

  21. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Dilithium: digital signatures from module lattices. In: CHES, vol. 2018, January 2018

    Google Scholar 

  22. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_36

    Chapter  Google Scholar 

  23. Esgin, M.F., et al.: Practical post-quantum few-time verifiable random function with applications to Algorand. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 560–578. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_29

    Chapter  Google Scholar 

  24. Esgin, M.F., Nguyen, N.K., Seiler, G.: Practical exact proofs from lattices: new techniques to exploit fully-splitting rings. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 259–288. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_9

    Chapter  Google Scholar 

  25. Esgin, M.F., Steinfeld, R., Liu, D., Ruj, S.: Efficient hybrid exact/relaxed lattice proofs and applications to rounding and VRFs. Cryptology ePrint Archive, Paper 2022/141 (2022). https://eprint.iacr.org/2022/141

  26. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: new techniques for shorter and faster constructions and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 115–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_5

    Chapter  Google Scholar 

  27. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS, vol. 11464, pp. 67–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21568-2_4

    Chapter  MATH  Google Scholar 

  28. Esgin, M.F., Steinfeld, R., Zhao, R.K.: MatRiCT\(^+\): more efficient post-quantum private blockchain payments. In: IEEE Symposium on Security and Privacy (S &P), pp. 1281–1298. IEEE (2022). (Full version at ia.cr/2021/545)

    Google Scholar 

  29. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient, scalable and post-quantum blockchain confidential transactions protocol. In: ACM CCS, pp. 567–584. ACM (2019)

    Google Scholar 

  30. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_13

    Chapter  Google Scholar 

  31. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling Byzantine Agreements for cryptocurrencies. In: SOSP, pp. 51–68. ACM (2017)

    Google Scholar 

  32. Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5: provably preventing DNSSEC zone enumeration. In: NDSS. The Internet Society (2015)

    Google Scholar 

  33. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_18

    Chapter  Google Scholar 

  34. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized currencies. In: ACM CCS, pp. 473–489. ACM (2017)

    Google Scholar 

  35. Hohenberger, S., Myers, S.A., Pass, R., Shelat, A.: ANONIZE: a large-scale anonymous survey system. In: IEEE Symposium on Security and Privacy, pp. 375–389. IEEE Computer Society (2014)

    Google Scholar 

  36. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_13

    Chapter  MATH  Google Scholar 

  37. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  38. Kilian, J.: Uses of Randomness in Algorithms and Protocols. MIT Press (1990)

    Google Scholar 

  39. Kim, D., Lee, D., Seo, J., Song, Y.: Toward practical lattice-based proof of knowledge from Hint-MLWE. Cryptology ePrint Archive, Paper 2023/623 (2023). https://eprint.iacr.org/2023/623

  40. Lawlor, S., Lewi, K.: Deploying key transparency at WhatsApp. https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/. Accessed 16 May 2023

  41. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based PRFs and applications to e-cash. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_11

    Chapter  Google Scholar 

  42. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  43. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  44. Lyubashevsky, V., Nguyen, N.K., Plançon, M.: Lattice-based zero-knowledge proofs and applications: shorter, simpler, and more general. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology, CRYPTO 2022. LNCS, vol. 13508, pp. 71–101. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_3

  45. Lyubashevsky, V., Nguyen, N.K., Plancon, M., Seiler, G.: Shorter lattice-based group signatures via “almost free’’ encryption and other optimizations. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 218–248. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_8

    Chapter  Google Scholar 

  46. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Practical lattice-based zero-knowledge proofs for integer relations. In: ACM CCS, pp. 1051–1070. ACM (2020)

    Google Scholar 

  47. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: Shorter lattice-based zero-knowledge proofs via one-time commitments. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 215–241. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_9

    Chapter  Google Scholar 

  48. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: set membership from ideal lattices with applications to ring signatures and confidential transactions. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 611–640. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_21

    Chapter  Google Scholar 

  49. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8

    Chapter  MATH  Google Scholar 

  50. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: FOCS, pp. 120–130. IEEE Computer Society (1999)

    Google Scholar 

  51. Nguyen, N.K.: Private communication (2022)

    Google Scholar 

  52. Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint Archive, Report 2017/099 (2017). https://eprint.iacr.org/2017/099

  53. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2

    Chapter  Google Scholar 

  54. Yamada, S.: Asymptotically compact adaptively secure lattice ibes and verifiable random functions via generalized partitioning techniques. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_6

    Chapter  Google Scholar 

  55. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based zero-knowledge arguments with standard soundness: construction and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_6

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported in part by ARC Discovery Project grants DP180102199 and DP220101234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed F. Esgin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esgin, M.F., Steinfeld, R., Liu, D., Ruj, S. (2023). Efficient Hybrid Exact/Relaxed Lattice Proofs and Applications to Rounding and VRFs. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-3-031-38554-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38554-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38553-7

  • Online ISBN: 978-3-031-38554-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics