Skip to main content

Lattice-Based Authenticated Key Exchange with Tight Security

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Abstract

We construct the first tightly secure authenticated key exchange (AKE) protocol from lattices. Known tight constructions are all based on Diffie-Hellman-like assumptions. Thus, our protocol is the first construction with tight security from a post-quantum assumption.

Our AKE protocol is constructed tightly from a new security notion for key encapsulation mechanisms (KEMs), called one-way security against checkable chosen-ciphertext attacks (OW-ChCCA). We show how an OW-ChCCA secure KEM can be tightly constructed based on the Learning With Errors assumption, leading to the desired AKE protocol. To show the usefulness of OW-ChCCA security beyond AKE, we use it to construct the first tightly bilateral selective-opening (BiSO) secure PKE. BiSO security is a stronger selective-opening notion proposed by Lai et al. (ASIACRYPT 2021).

The work of Pan and Zeng is supported by the Research Council of Norway under Project No. 324235. Parts of the work were done while the second author was visiting NTNU. The visit was supported by the same project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We believe that the MDDH-based construction in [18] can also satisfy our notion. As it does not satisfy the deterministic ciphertext derivation property that we need for SIM-BiSO-CCA security, we decided not to present it.

  2. 2.

    This security loss can be derived as in [17, Theorem 3] by ignoring the quantum RO and the additive negligible terms. The single-to-multi-challenge reduction introduces the multiplicative term T.

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

  2. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4

  3. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26

  4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

  5. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 644–674. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-76581-5_22

  6. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488680

  7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

  8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03332-3_15

  9. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8_25

  10. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 21, Part II. LNCS, vol. 12727, pp. 448–479. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-78375-4_18

  11. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryptographic parameters for real-world deployments. J. Cryptol. 34(3), 30 (2021). https://doi.org/10.1007/s00145-021-09388-x

  12. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007). https://eprint.iacr.org/2007/432

  14. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0_4

  15. Han, S., et al.: Authenticated key exchange and signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–700. Springer, Heidelberg, Virtual Event (2021). https://doi.org/10.1007/978-3-030-84259-8_23

  16. Han, S., Liu, S., Gu, D.: Key encapsulation mechanism with tight enhanced security in the multi-user setting: impossibility result and optimal tightness. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 483–513. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92075-3_17

  17. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_14

  18. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-77870-5_5

  19. Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for GPV-IBE in the quantum random oracle model. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 253–282. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03329-3_9

  20. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_37

  21. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: Dunkelman, O., Jacobson Jr., M.J., O’Flynn, C. (eds.) Selected Areas in Cryptography, pp. 451–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_18

  22. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

  23. Lai, J., Yang, R., Huang, Z., Weng, J.: Simulation-based bi-selective opening security for public key encryption. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 456–482. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92075-3_16

  24. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1

    Chapter  Google Scholar 

  25. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor functions and selective opening chosen-ciphertext security from LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 332–364. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63697-9_12

  26. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64834-3_27

  27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October 2004. https://doi.org/10.1109/FOCS.2004.72

  28. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990. https://doi.org/10.1145/100216.100273

  29. Okamoto, T., Pointcheval, D.: REACT: rapid Enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_13

  30. Pan, J., Qian, C., Ringerud, M.: Signed Diffie-Hellman key exchange with tight security. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 201–226. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75539-3_9

  31. Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 347–378. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-97131-1_12

  32. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight security. Cryptology ePrint Archive, Paper 2023/823 (2023). https://eprint.iacr.org/2023/823

  33. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press, May/June 2009. https://doi.org/10.1145/1536414.1536461

  34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060603

  35. Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 37–67. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70700-6_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., Wagner, B., Zeng, R. (2023). Lattice-Based Authenticated Key Exchange with Tight Security. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-3-031-38554-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38554-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38553-7

  • Online ISBN: 978-3-031-38554-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics