Abstract
We construct the first tightly secure authenticated key exchange (AKE) protocol from lattices. Known tight constructions are all based on Diffie-Hellman-like assumptions. Thus, our protocol is the first construction with tight security from a post-quantum assumption.
Our AKE protocol is constructed tightly from a new security notion for key encapsulation mechanisms (KEMs), called one-way security against checkable chosen-ciphertext attacks (OW-ChCCA). We show how an OW-ChCCA secure KEM can be tightly constructed based on the Learning With Errors assumption, leading to the desired AKE protocol. To show the usefulness of OW-ChCCA security beyond AKE, we use it to construct the first tightly bilateral selective-opening (BiSO) secure PKE. BiSO security is a stronger selective-opening notion proposed by Lai et al. (ASIACRYPT 2021).
The work of Pan and Zeng is supported by the Research Council of Norway under Project No. 324235. Parts of the work were done while the second author was visiting NTNU. The visit was supported by the same project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
We believe that the MDDH-based construction in [18] can also satisfy our notion. As it does not satisfy the deterministic ciphertext derivation property that we need for SIM-BiSO-CCA security, we decided not to present it.
- 2.
This security loss can be derived as in [17, Theorem 3] by ignoring the quantum RO and the additive negligible terms. The single-to-multi-challenge reduction introduces the multiplicative term T.
References
Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12
Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited - new reduction, properties and applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4
Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26
Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21
Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lattices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 644–674. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-76581-5_22
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 575–584. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488680
Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8_25
Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 21, Part II. LNCS, vol. 12727, pp. 448–479. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-78375-4_18
Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryptographic parameters for real-world deployments. J. Cryptol. 34(3), 30 (2021). https://doi.org/10.1007/s00145-021-09388-x
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. Cryptology ePrint Archive, Report 2007/432 (2007). https://eprint.iacr.org/2007/432
Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0_4
Han, S., et al.: Authenticated key exchange and signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 670–700. Springer, Heidelberg, Virtual Event (2021). https://doi.org/10.1007/978-3-030-84259-8_23
Han, S., Liu, S., Gu, D.: Key encapsulation mechanism with tight enhanced security in the multi-user setting: impossibility result and optimal tightness. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 483–513. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92075-3_17
Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_14
Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-77870-5_5
Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for GPV-IBE in the quantum random oracle model. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 253–282. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03329-3_9
Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_37
de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: Dunkelman, O., Jacobson Jr., M.J., O’Flynn, C. (eds.) Selected Areas in Cryptography, pp. 451–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_18
Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33
Lai, J., Yang, R., Huang, Z., Weng, J.: Simulation-based bi-selective opening security for public key encryption. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 456–482. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92075-3_16
LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1
Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor functions and selective opening chosen-ciphertext security from LWE. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 332–364. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63697-9_12
Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64834-3_27
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: 45th FOCS, pp. 372–381. IEEE Computer Society Press, October 2004. https://doi.org/10.1109/FOCS.2004.72
Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990. https://doi.org/10.1145/100216.100273
Okamoto, T., Pointcheval, D.: REACT: rapid Enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_13
Pan, J., Qian, C., Ringerud, M.: Signed Diffie-Hellman key exchange with tight security. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 201–226. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75539-3_9
Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 347–378. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-97131-1_12
Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight security. Cryptology ePrint Archive, Paper 2023/823 (2023). https://eprint.iacr.org/2023/823
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press, May/June 2009. https://doi.org/10.1145/1536414.1536461
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060603
Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 37–67. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70700-6_2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Pan, J., Wagner, B., Zeng, R. (2023). Lattice-Based Authenticated Key Exchange with Tight Security. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14085. Springer, Cham. https://doi.org/10.1007/978-3-031-38554-4_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-38554-4_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38553-7
Online ISBN: 978-3-031-38554-4
eBook Packages: Computer ScienceComputer Science (R0)