Skip to main content

Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and Distributed Key Generation

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2023 (CRYPTO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14081))

Included in the following conference series:

  • 1316 Accesses

Abstract

We present \(\textsf{Bingo}\), an adaptively secure and optimally resilient packed asynchronous verifiable secret sharing (PAVSS) protocol that allows a dealer to share \(f+1\) secrets with a total communication complexity of \(O(\lambda n^2)\) words, where \(\lambda \) is the security parameter and n is the number of parties. Using \(\textsf{Bingo}\), we obtain an adaptively secure validated asynchronous Byzantine agreement (VABA) protocol that uses \(O(\lambda n^3)\) expected words and constant expected time, which we in turn use to construct an adaptively secure high-threshold asynchronous distributed key generation (ADKG) protocol that uses \(O(\lambda n^3)\) expected words and constant expected time. To the best of our knowledge, our ADKG is the first to allow for an adaptive adversary while matching the asymptotic complexity of the best known static ADKGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://explore.flashbots.net/.

  2. 2.

    For a threshold of \(f+m+1\), define \(I'=\{i_{f+1},\ldots ,i_{f+m}\}\) instead.

References

  1. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable secret sharing and proactive cryptosystems. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002, pp. 88–97 (2002)

    Google Scholar 

  2. Cachin, C., Kursawe, K., Shoup, V.: Random Oracles in Constantinople: practical asynchronous byzantine agreement using cryptography. J. Cryptol. 18, 219–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Aggregatable distributed key generation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 147–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_6

    Chapter  Google Scholar 

  4. Patra, A., Choudhury, A., Rangan, C.P.: Efficient Asynchronous verifiable secret sharing and multiparty computation. J. Cryptol. 28(1), 49–109 (2015). https://doi.org/10.1007/s00145-013-9172-7

  5. Syta, E., et al.: Scalable Bias-Resistant Distributed Randomness. In: 38th IEEE Symposium on Security and Privacy, San Jose, CA, May 2017

    Google Scholar 

  6. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: 26th Annual Symposium on Foundations of Computer Science, pp. 383–395 (1985)

    Google Scholar 

  7. Franklin, M.K., Yung, M.: Communication complexity of secure computation (extended abstract). In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pp. 699–710. ACM (1992)

    Google Scholar 

  8. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 52–61 (1993)

    Google Scholar 

  9. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal resilience. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 42–51 (1993)

    Google Scholar 

  10. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_22

    Chapter  Google Scholar 

  11. Chopard, A., Hirt, M., Liu-Zhang, C.-D.: On communication-efficient asynchronous MPC with adaptive security. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 35–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_2

    Chapter  Google Scholar 

  12. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)

    Google Scholar 

  13. Daian, P., et al.: Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus Instability in Decentralized Exchanges. In: IEEE Symposium on Security and Privacy (2020)

    Google Scholar 

  14. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark is the forest? In: IEEE Symposium on Security and Privacy (2022)

    Google Scholar 

  15. Bowe, S., Gabizon, A., Miers, I.: Scalable Multi-party Computation for ZK-SNARK Parameters in the Random Beacon Model. Cryptology ePrint Archive, Paper 2017/1050 (2017)

    Google Scholar 

  16. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  17. Kokoris Kogias, E., Malkhi, D., Spiegelman, A.: Asynchronous distributed key generation for computationally-secure randomness, consensus, and threshold signatures. In: CCS 2020: 2020 ACM SIGSAC Conference on Computer and Communications Security (2020)

    Google Scholar 

  18. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bacho, R., Loss, J.: On the adaptive security of the threshold BLS signature scheme. In: Proceedings of ACM CCS 2022 (2022)

    Google Scholar 

  20. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–116. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_7

    Chapter  Google Scholar 

  21. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pp. 218–229. ACM (1987)

    Google Scholar 

  22. Kate, A., Zaverucha, G.M., Goldberg. I.: Constant-size commitments to polynomials and their applications. In: Advances in Cryptology - ASIACRYPT 2010, pp. 177–194 (2010)

    Google Scholar 

  23. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 98–127. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_4

    Chapter  Google Scholar 

  24. Abraham, I., Asharov, G., Patil, S., Patra, A.: Asymptotically Free Broadcast in Constant Expected Time via Packed VSS. In: IACR Cryptol. ePrint Arch. (2022). https://eprint.iacr.org/2022/1266

  25. Abraham, I., Asharov, G., Yanai, A.: Efficient perfectly secure computation with optimal resilience. J. Cryptol. 35(4), 27 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kate, A., Miller, A., Yurek, T.: Brief Note: Asynchronous Verifiable Secret Sharing with Optimal Resilience and Linear Amortized Overhead (2019). arXiv: 1902.06095 [cs.CR]

  27. Backes, M., Datta, A., Kate, A.: Asynchronous computational VSS with reduced communication complexity. In: Topics in Cryptology – CT-RSA 2013, pp. 259–276 (2013)

    Google Scholar 

  28. AlHaddad, N., Varia, M., Zhang., H.: High-threshold AVSS with optimal communication complexity. In: Financial Cryptography and Data Security, pp. 479–498 (2021)

    Google Scholar 

  29. Yurek, T., Luo, L., Fairoze, J., Kate, A., Miller, A.K.: hbACSS: how to robustly share many secrets. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) 2022 (2022)

    Google Scholar 

  30. Kate, A., Huang, Y., Goldberg, I.: Distributed key generation in the wild. In: Proceedings of ICDCS (2009)

    Google Scholar 

  31. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Reaching consensus for asynchronous distributed key generation. In: PODC 2021: ACM Symposium on Principles of Distributed Computing 2021, pp. 363–373 (2021)

    Google Scholar 

  32. Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias, L., Ren, L.: Practical asynchronous distributed key generation. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 2518–2534 (2022)

    Google Scholar 

  33. Groth, J., Shoup, V.: Design and analysis of a distributed ECDSA signing service. In: Cryptology ePrint Archive (2022). https://eprint.iacr.org/2022/506

  34. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 148–161. ACM (1988)

    Google Scholar 

  36. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive oracle proofs of proximity. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), pp. 14:1–14:17 (2018)

    Google Scholar 

  37. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside the box improves soundness. In: 11th Innovations in Theoretical Computer Science Conference, ITCS, pp. 5:1–5:32 (2020)

    Google Scholar 

  38. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  39. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334 (2018)

    Google Scholar 

  40. Choudhury, A., Patra, A.: An efficient framework for unconditionally secure multiparty computation. IEEE Trans. Inf. Theory. 63(1), 428–468 (2017). https://doi.org/10.1109/TIT.2016.2614685

  41. Cascudo, I., David, B.: Scrape: scalable randomness attested by public entities. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 537–556. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_27

    Chapter  Google Scholar 

  42. Cascudo, I., David, B.: ALBATROSS: publicly AttestabLe BATched randomness based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 311–341. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_11

    Chapter  Google Scholar 

  43. Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its applications. In: CCS 2021: 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 2705–2721 (2021)

    Google Scholar 

  44. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G.: Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and Distributed Key Generation (2022). https://eprint.iacr.org/2022/1759

  45. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    Chapter  Google Scholar 

  46. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one- more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 163 (2003)

    Google Scholar 

  48. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra (3rd edn.) Cambridge University Press (2013). ISBN: 978-1-107-03903-2

    Google Scholar 

Download references

Acknowledgements

We would like to thank Alin Tomescu, Kobi Gurkan, Julian Loss, and Renas Bacho for many insightful discussions. Gilad Stern was supported by the HUJI Federmann Cyber Security Research Center in conjunction with the Israel National Cyber Directorate (INCD) in the Prime Minister’s Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilad Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G. (2023). Bingo: Adaptivity and Asynchrony in Verifiable Secret Sharing and Distributed Key Generation. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14081. Springer, Cham. https://doi.org/10.1007/978-3-031-38557-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38557-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38556-8

  • Online ISBN: 978-3-031-38557-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics