Skip to main content

Abstract

This study is focused on wastewater treatment station instrumentation. It is preliminary work for accomplishing virtual sensors in the future. In this stage, a specific case of correlation between monitored variables is carried out. The main aim is to choose the right and enough variables to predict the chemical oxygen demand (COD) over a wastewater treatment plant. Firstly, four methods for feature selection are implemented with all the monitored variables. After that, three regression techniques are applied to measure the performance of the previous step’s cases. In all cases were obtained an acceptable COD prediction was, which will allow the implementation of virtual sensors in the future with predictably adequate accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A review of feature selection methods with applications. In: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2015 - Proceedings, pp. 1200–1205 (2015). https://doi.org/10.1109/MIPRO.2015.7160458

  2. Allen, M.P.: Understanding Regression Analysis. Springer, Heidelberg (2004). https://doi.org/10.1007/b102242

  3. Bagherzadeh, F., Mehrani, M.J., Basirifard, M., Roostaei, J.: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance. J. Water Process Eng. 41, 102033 (2021). https://doi.org/10.1016/J.JWPE.2021.102033

  4. Boretti, A., Rosa, L.: Reassessing the projections of the world water development report. NPJ Clean Water 2(1), 15 (2019)

    Article  Google Scholar 

  5. Borzooei, S., et al.: Optimization of the wastewater treatment plant: from energy saving to environmental impact mitigation. Sci. Total Environ. 691, 1182–1189 (2019)

    Article  Google Scholar 

  6. Brown, T.C., Mahat, V., Ramirez, J.A.: Adaptation to future water shortages in the united states caused by population growth and climate change. Earth’s Future 7(3), 219–234 (2019)

    Article  Google Scholar 

  7. Cunha, D.L., da Silva, A.S., Coutinho, R., Marques, M.: Optimization of ozonation process to remove psychoactive drugs from two municipal wastewater treatment plants. Water Air Soil Pollution 233(2), 67 (2022)

    Article  Google Scholar 

  8. Fernandez-Serantes, L., Casteleiro-Roca, J., Calvo-Rolle, J.: Hybrid intelligent system for a half-bridge converter control and soft switching ensurement. Revista Iberoamericana de Automática e Informática industrial (2022)

    Google Scholar 

  9. Fonti, V., Belitser, E.: Feature selection using lasso (2017)

    Google Scholar 

  10. Freund, R.J., Wilson, W.J., Sa, P.: Regression Analysis. Elsevier, Amsterdam (2006)

    Google Scholar 

  11. Gonzalez-Cava, J.M., et al.: Machine learning techniques for computer-based decision systems in the operating theatre: application to analgesia delivery. Logic J. IGPL 29(2), 236–250 (2020). https://doi.org/10.1093/jigpal/jzaa049

  12. Ivanov, A., Bezyayev, A., Gazin, A.: Simplification of statistical description of quantum entanglement of multidimensional biometric data using symmetrization of paired correlation matrices. J. Comput. Eng. Math. 4, 3–13 (2017). https://doi.org/10.14529/jcem170201

  13. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69, 066138 (2004). https://doi.org/10.1103/PhysRevE.69.066138, https://link.aps.org/doi/10.1103/PhysRevE.69.066138

  14. Lakshmanaprabu, S.K., Shankar, K., Ilayaraja, M., Nasir, A.W., Vijayakumar, V., Chilamkurti, N.: Random forest for big data classification in the internet of things using optimal features. Int. J. Mach. Learn. Cybern. 10(10), 2609–2618 (2019). https://doi.org/10.1007/s13042-018-00916-z

    Article  Google Scholar 

  15. Liu, H., et al.: Evolving feature selection. IEEE Intell. Syst. 20(6), 64–76 (2005). https://doi.org/10.1109/MIS.2005.105

    Article  Google Scholar 

  16. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491–502 (2005). https://doi.org/10.1109/TKDE.2005.66

    Article  Google Scholar 

  17. Mestre, X., Vallet, P.: Correlation tests and linear spectral statistics of the sample correlation matrix. IEEE Trans. Inf. Theory 63(7), 4585–4618 (2017). https://doi.org/10.1109/TIT.2017.2689780

    Article  MathSciNet  MATH  Google Scholar 

  18. Modaresi, F., Araghinejad, S., Ebrahimi, K.: A comparative assessment of artificial neural network, generalized regression neural network, least-square support vector regression, and k-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions. Water Resour. Manag. 32(1), 243–258 (2017). https://doi.org/10.1007/s11269-017-1807-2

    Article  Google Scholar 

  19. Muoio, R., et al.: Optimization of a large industrial wastewater treatment plant using a modeling approach: a case study. J. Environ. Manag. 249, 109436 (2019)

    Article  Google Scholar 

  20. Muthukrishnan, R., Rohini, R.: Lasso: a feature selection technique in predictive modeling for machine learning. In: 2016 IEEE International Conference on Advances in Computer Applications, ICACA 2016, pp. 18–20 (2017). https://doi.org/10.1109/ICACA.2016.7887916

  21. Porras, S., Jove, E., Baruque, B., Calvo-Rolle, J.L.: A comparative analysis of intelligent techniques to predict energy generated by a small wind turbine from atmospheric variables. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac031

  22. Ranstam, J., Cook, J.A.: Lasso regression. Br. J. Surg. 105, 1348 (2018). https://doi.org/10.1002/bjs.10895

  23. Razif, M., Soemarno, Yanuwiadi, B., Rachmansyah, A., Belgiawan, P.F.: Implementation of regression linear method to predict WWTP cost for EIA: case study of ten malls in Surabaya city. Procedia Environ. Sci. 28, 158–165 (2015). https://doi.org/10.1016/j.proenv.2015.07.022, https://www.sciencedirect.com/science/article/pii/S1878029615002340, the 5th Sustainable Future for Human Security (SustaiN 2014)

  24. Ross, B.C.: Mutual information between discrete and continuous data sets. PLoS ONE 9, e87357 (2014). https://doi.org/10.1371/journal.pone.0087357

  25. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007). https://doi.org/10.1093/bioinformatics/btm344

  26. Safarpour, H., Tabesh, M., Shahangian, S.A.: Environmental assessment of a wastewater system under water demand management policies. Water Resour. Manag. 36(6), 2061–2077 (2022)

    Article  Google Scholar 

  27. Şenol, R., Salman, O., Kaya, Z.: Potable water production from ambient moisture. Appl. Water Sci. 13(1), 10 (2023)

    Article  Google Scholar 

  28. Simić, S., Banković, Z., Villar, J.R., Simić, D., Simić, S.D.: A hybrid fuzzy clustering approach for diagnosing primary headache disorder. Logic J. IGPL 29(2), 220–235 (2020). https://doi.org/10.1093/jigpal/jzaa048

  29. Spellman, F.R.: Handbook of Water and Wastewater Treatment Plant Operations. CRC Press, Boca Raton (2013)

    Google Scholar 

  30. Su, X., Yan, X., Tsai, C.L.: Linear regression. Wiley Interdisc. Rev. Comput. Stat. 4(3), 275–294 (2012)

    Article  Google Scholar 

  31. Vanli, N.D., Kozat, S.S.: A comprehensive approach to universal piecewise nonlinear regression based on trees. IEEE Trans. Sig. Process. 62(20), 5471–5486 (2014). https://doi.org/10.1109/TSP.2014.2349882, https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907445235 &doi=10.1109%2fTSP.2014.2349882 &partnerID=40 &md5=74299ee97d7c3d7a5448c133cf129c62

  32. Vanli, N.D., Sayin, M.O., Mohaghegh N.M., Ozkan, H., Kozat, S.S.: Nonlinear regression via incremental decision trees. Pattern Recogn. 86, 1–13 (2019). https://doi.org/10.1016/j.patcog.2018.08.014, https://www.sciencedirect.com/science/article/pii/S0031320318303121

  33. Windeatt, T.: Accuracy/diversity and ensemble MLP classifier design. IEEE Trans. Neural Netw. 17(5), 1194–1211 (2006). https://doi.org/10.1109/TNN.2006.875979

    Article  Google Scholar 

  34. Zayas-Gato, F., et al.: Intelligent model for active power prediction of a small wind turbine. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac040

  35. Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D.: Learning k for KNN classification. ACM Trans. Intell. Syst. Technol. 8(3) (2017). https://doi.org/10.1145/2990508

Download references

Acknowledgement

Míriam Timiraos’s research was supported by the “Xunta de Galicia” through grants to industrial PhD (http://gain.xunta.gal/), under the “Doutoramento Industrial 2022” grant with reference: 04_IN606D_2022_ 2692965.

Álvaro Michelena’s research was supported by the Spanish Ministry of Universities (https://www.universidades.gob.es/), under the “Formación de Profesorado Universitario” grant with reference: FPU21/00932.

CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Míriam Timiraos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Timiraos, M. et al. (2023). Comparative Study of Wastewater Treatment Plant Feature Selection for COD Prediction. In: Jove, E., Zayas-Gato, F., Michelena, Á., Calvo-Rolle, J.L. (eds) Distributed Computing and Artificial Intelligence, Special Sessions II - Intelligent Systems Applications, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-031-38616-9_2

Download citation

Publish with us

Policies and ethics