Skip to main content

Abstract

The Internet of Things (IoT) encompasses a vast network of interconnected devices and systems, usually with limited computational power, memory, and energy resources. These characteristics make IoT ecosystems prone to different cybersecurity problems that must be addressed. Model-based intrusion detection systems (IDS) are one the tools that are being researched and developed to help in the detection of anomalies in IoT networks.

This study investigates the behavior and impact of the latent space within an autoencoder, with a focus on developing an optimal decision tree-based classification model integrated into an IoT-specific Intrusion Detection System (IDS). To ensure the effectiveness of the autoencoder, various latent spaces are explored and evaluated. By utilizing a validated IoT dataset that specifically targets the CoAP (Constrained Application Protocol) protocol, we extract an optimized model tailored to detect attacks on this protocol. The results of our comprehensive evaluation demonstrate promising outcomes, validating the effectiveness of the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ProtocolReference - The Wireshark Wiki. https://wiki.wireshark.org/ProtocolReference

  2. Abusitta, A., de Carvalho, G.H., Wahab, O.A., Halabi, T., Fung, B.C., Mamoori, S.A.: Deep learning-enabled anomaly detection for IoT systems. Inter. Things 21, 100656 (2023). https://doi.org/10.1016/j.iot.2022.100656. https://www.sciencedirect.com/science/article/pii/S2542660522001378

  3. Correia, N., Sacramento, D., Schutz, G.: Dynamic aggregation and scheduling in CoAP/observe-based wireless sensor networks. IEEE Internet Things J. 3, 923–936 (2016). https://doi.org/10.1109/JIOT.2016.2517120

  4. De, P., Nath, I.: Machine learning approaches on intrusion detection system: a holistic review (2023). https://doi.org/10.1007/978-981-19-2004-2-35

  5. Fontaine, T.J.: native-dns-packet @ github.com (2014). https://github.com/tjfontaine/native-dns-packet

  6. Granjal, J., Silva, J., Lourenço, N.: Intrusion detection and prevention in CoAP wireless sensor networks using anomaly detection. Sensors 18, 2445 (2018). https://doi.org/10.3390/s18082445

  7. Hassan, H.A., Hemdan, E.E., El-Shafai, W., Shokair, M., El-Samie, F.E.A.: Intrusion detection systems for the internet of thing: a survey study. Wirel. Person. Commun. 128, 2753–2778 (2023). https://doi.org/10.1007/s11277-022-10069-6

  8. Kovatsch, M.: Github - mkovatsc/copper4cr: Copper (cu) CoAP user-agent for chrome (javascript implementation) (2022). https://github.com/mkovatsc/Copper4Cr

  9. Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., Zhao, W.: A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4, 1125–1142 (2017). https://doi.org/10.1109/JIOT.2017.2683200

    Article  Google Scholar 

  10. lovelesh patel: Commits \(\cdot \) automote/esp-coap \(\cdot \) github (2021). https://github.com/automote/ESP-CoAP/commits?author=lovelesh

  11. Pumsirirat, A., Yan, L.: Credit card fraud detection using deep learning based on auto-encoder and restricted Boltzmann machine. Tech. Rep. 1 (2018). http://www.ijacsa.thesai.org/

  12. Rizzardi, A., Sicari, S., Coen-Porisini, A.: Analysis on functionalities and security features of internet of things related protocols. Wirel. Netw. 28, 2857–2887 (2022). https://doi.org/10.1007/s11276-022-02999-7

  13. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP) (2014). https://doi.org/10.17487/RFC7252. https://www.rfc-editor.org/info/rfc7252

  14. Statista: Internet of things (IoT) connected devices installed base worldwide from 2015 to 2025 (2019). https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

  15. Sutikno, T., Thalmann, D.: Insights on the internet of things: past, present, and future directions. TELKOMNIKA (Telecommunication Computing Electronics and Control) 20, 1399 (2022). https://doi.org/10.12928/telkomnika.v20i6.22028

  16. Thomas, D.R., Clayton, R., Beresford, A.R.: 1000 days of UDP amplification DDoS attacks. eCrime Researchers Summit, eCrime,pp. 79–84 (2017). https://doi.org/10.1109/ECRIME.2017.7945057

  17. Westphall, J., Loffi, L., Westphall, C.M., Everson Martina, J.: CoAP + DTLS: a comprehensive overview of cryptographic performance on an IoT scenario. In: 2020 IEEE Sensors Applications Symposium (SAS), pp. 1–6 (2020). https://doi.org/10.1109/SAS48726.2020.9220033

  18. Whitmore, A., Agarwal, A., Da Xu, L.: The internet of things—a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2014). https://doi.org/10.1007/s10796-014-9489-2

    Article  Google Scholar 

  19. Yao, W., Hu, L., Hou, Y., Li, X.: A lightweight intelligent network intrusion detection system using one-class autoencoder and ensemble learning for IoT. Sensors 23(8), 4141 (2023). https://doi.org/10.3390/s23084141

Download references

Acknowledgements

– Spanish National Cybersecurity Institute (INCIBE) and developed Research Institute of Applied Sciences in Cybersecurity (RIASC).

– CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Professional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Aveleira-Mata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Ordás, M.T., Aveleira-Mata, J., García-Rodiguez, I., Díaz-Longueira, A.J., Calvo-Rolle, JL., Alaiz-Moretón, H. (2023). Impact of Autoencoder Latent Space on IoT CoAP Attack Categorization. In: Jove, E., Zayas-Gato, F., Michelena, Á., Calvo-Rolle, J.L. (eds) Distributed Computing and Artificial Intelligence, Special Sessions II - Intelligent Systems Applications, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-031-38616-9_4

Download citation

Publish with us

Policies and ethics