Skip to main content

Abstract

Machine Learning is believed to be the solution for reducing the amount of time and computational cost required to analyze the large volume of light curves obtained from different surveys in order to detect transit-like signals using the transit method. This technique consists in detecting periodic dimmings in stellar light curves due to the presence of an orbiting exoplanet. We created a 1D Convolutional Neural Network model which was trained, validated and tested with simulated light curves that mimic those expected for the Kepler Space Telescope in its extended mission (K2). Our light curve simulator considers different stellar variability phenomena, such as rotations, pulsations and flares, which along with the stellar noise expected for K2 data, hinders the transit signal detection, as in real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Stellar magnitude is a measure of the stellar brightness as observed from the Earth.

References

  1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

  2. Bloomfield, D.S., Higgins, P.A., McAteer, R.T.J., Gallagher, P.T.: Toward reliable benchmarking of solar flare forecasting methods. Astrophysical J. Lett. 747(2), L41 (2012). https://doi.org/10.1088/2041-8205/747/2/L41

    Article  Google Scholar 

  3. Borucki, W.J., et al.: Kepler planet-detection mission: Introduction and first results. Science 327(5968), 977–980 (2010). https://doi.org/10.1126/science.1185402

  4. Bridle, J.: Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. In: Touretzky, D. (ed.) Advances in Neural Information Processing Systems, vol. 2. Morgan-Kaufmann (1989). https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf

  5. Chollet, F., et al.: Keras (2015). https://keras.io

  6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv e-prints arXiv:1511.07289, November 2015

  7. Coughlin, J.L., et al.: Planetary candidates observed by kepler. vii. the first fully uniform catalog based on the entire 48-month data set (q1–q17 dr24). Astrophysical J. Suppl. Ser. 224(1), 12 (2016). https://doi.org/10.3847/0067-0049/224/1/12

  8. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102(477), 359–378 (2007). https://doi.org/10.1198/016214506000001437

  9. Hippke, M., David, T.J., Mulders, G.D., Heller, R.: Wōtan: comprehensive time-series detrending in python. Astrophys J. 158(4), 143 (2019). https://doi.org/10.3847/1538-3881/ab3984

    Article  Google Scholar 

  10. Hippke, Michael, Heller, René: Optimized transit detection algorithm to search for periodic transits of small planets. A &A 623, A39 (2019). https://doi.org/10.1051/0004-6361/201834672

  11. Howell, S.B., et al.: The k2 mission: Characterization and early results. Publications of the Astronomical Society of the Pacific 126(938), 398 (2014). https://doi.org/10.1086/676406

  12. Iglesias Álvarez, S., Díez Alonso, E., Sánchez Rodríguez, M.L., Rodríguez Rodríguez, J., Sánchez Lasheras, F., de Cos Juez, F.J.: One-dimensional convolutional neural networks for detecting transiting exoplanets. Axioms 12(4) (2023). https://doi.org/10.3390/axioms12040348

  13. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv e-prints arXiv:1412.6980 (December 2014)

  14. Kovács, G., Zucker, S., Mazeh, T.: A box-fitting algorithm in the search for periodic transits. A &A 391(1), 369–377 (2002). https://doi.org/10.1051/0004-6361:20020802

  15. Kreidberg, L.: batman: Basic transit model calculation in python. Publications of the Astronomical Society of the Pacific 127(957), 1161 (2015). https://doi.org/10.1086/683602

  16. Mandel, K., Agol, E.: Analytic light curves for planetary transit searches. Astrophysical J. 580(2), L171 (2002). https://doi.org/10.1086/345520

  17. McCauliff, S.D., et al.: Automatic classification of kepler planetary transit candidates. Astrophysical J. 806(1), 6 (2015). https://doi.org/10.1088/0004-637X/806/1/6

  18. Pearson, K.A., Palafox, L., Griffith, C.A.: Searching for exoplanets using artificial intelligence. Mon. Not. R. Astron. Soc. 474(1), 478–491 (2018). https://doi.org/10.1093/mnras/stx2761

    Article  Google Scholar 

  19. Shallue, C.J., Vanderburg, A.: Identifying exoplanets with deep learning: a five-planet resonant chain around kepler-80 and an eighth planet around kepler-90. Astronomical J. 155(2), 94 (2018). https://doi.org/10.3847/1538-3881/aa9e09

  20. Wolszczan, A., Frail, D.A.: A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355(6356), 145–147 (1992). https://doi.org/10.1038/355145a0

    Article  Google Scholar 

  21. Zucker, S., Giryes, R.: Shallow transits-deep learning. i. feasibility study of deep learning to detect periodic transits of exoplanets. Astronomical J. 155(4), 147 (2018). https://doi.org/10.3847/1538-3881/aaae05

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Iglesias Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iglesias Álvarez, S. et al. (2023). Transiting Exoplanet Detection Through 1D Convolutional Neural Networks. In: Jove, E., Zayas-Gato, F., Michelena, Á., Calvo-Rolle, J.L. (eds) Distributed Computing and Artificial Intelligence, Special Sessions II - Intelligent Systems Applications, 20th International Conference. DCAI 2023. Lecture Notes in Networks and Systems, vol 742. Springer, Cham. https://doi.org/10.1007/978-3-031-38616-9_6

Download citation

Publish with us

Policies and ethics