Skip to main content

ST-Segment Anomalies Detection from Compressed Sensing Based ECG Data by Means of Machine Learning

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2022)

Abstract

Telemedicine allows to constantly monitor patients without the need of hospitalization. Such a practice is enabled by IoMT (Internet of Medical Things) devices, which acquire signals, and by AI (Artificial Intelligence)-based algorithms, able to automatize the analysis carried out on many patients. The large quantity of data produced every minute by IoMT devices, however, makes the use of compression fundamental to reduce the bandwith used to transmit those data and the memory required to acquire them, and lossy compression (specifically, Compressed Sensing) has shown to be the most effective technique to use for the task. Previous work introduced AI-based approaches for automatically detecting hearth-related anomalies based on the electrocardiographic (ECG) signal. However, most of them assume the presence of the complete raw ECG signal. In this paper, we extend our previous work in which we introduced RAST, an approach for detecting ST segment-related anomalies. We present RAST \(^C\), an approach able at identifying the same abnormalities but on a highly compressed ECG signal. The results of our experiment, carried out on the Physionet European ST-T Database, shows that RAST \(^C\) is capable of discriminating Normal ECG from ST-depression and ST-elevation with classification metrics around 90%, even with the highest compression ratio experimented, i.e., with an ECG signal compressed by a factor of 16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, P.: ST segment characterization for long term automated ECG analysis [dissertation]. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science: Massachusetts Institute of Technology, no. 378 (1983)

    Google Scholar 

  2. Balestrieri, E., et al.: The architecture of an innovative smart t-shirt based on the internet of medical things paradigm. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2019)

    Google Scholar 

  3. Balestrieri, E., Daponte, P., De Vito, L., Picariello, F., Rapuano, S., Tudosa, I.: A Wi-Fi Internet-of-Things prototype for ECG monitoring by exploiting a novel compressed sensing method. Acta IMEKO 9(2), 38–45 (2020)

    Article  Google Scholar 

  4. Bhattarai, S., Chhabra, L., Hashmi, M.F., Willoughby, C.: Anteroseptal myocardial infarction (2022). http://europepmc.org/books/NBK540996

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Brunner, E., Marmot, M., Canner, R., Beksinska, M., Smith, G.D., O’Brien, J.: Childhood social circumstances and psychosocial and behavioural factors as determinants of plasma fibrinogen. Lancet 347(9007), 1008–1013 (1996)

    Article  Google Scholar 

  7. Bulusu, S.C., Faezipour, M., Ng, V., Nourani, M., Tamil, L.S., Banerjee, S.: Transient ST-segment episode detection for ECG beat classification. In: 2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA), pp. 121–124. IEEE (2011)

    Google Scholar 

  8. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comput. 19(90), 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Craven, D., McGinley, B., Kilmartin, L., Glavin, M., Jones, E.: Compressed sensing for bioelectric signals: a review. IEEE J. Biomed. Health Inform. 19(2), 529–540 (2015)

    Article  Google Scholar 

  10. De Vito, L., Picariello, E., Picariello, F., Rapuano, S., Tudosa, I.: A dictionary optimization method for reconstruction of ECG signals after compressed sensing. Sensors 21(16) (2021)

    Google Scholar 

  11. De Vito, L., et al.: An undershirt for monitoring of multi-lead ECG and respiration wave signals. In: 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4. 0 &IoT), pp. 550–555. IEEE (2021)

    Google Scholar 

  12. Dixon, A.M.R., Allstot, E.G., Gangopadhyay, D., Allstot, D.J.: Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)

    Article  Google Scholar 

  13. Ghiadoni, L., et al.: Mental stress induces transient endothelial dysfunction in humans. Circulation 102(20), 2473–2478 (2000)

    Article  Google Scholar 

  14. Goldberger, A.L., et al.: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Google Scholar 

  15. Harhash, A.A., et al.: aVR ST segment elevation: acute STEMI or not? Incidence of an acute coronary occlusion. Am. J. Med. 132(5), 622–630 (2019)

    Article  Google Scholar 

  16. Jager, F., et al.: Long-term ST database: a reference for the development and evaluation of automated ischaemia detectors and for the study of the dynamics of myocardial ischaemia. Med. Biol. Eng. Comput. 41(2), 172–182 (2003)

    Article  Google Scholar 

  17. Kandala, V.K., Vadaparthi, J.K.: Study of incidence and pattern of ECG changes in cerebrovascular accidents. Radiology 3(1), 107–109 (2018)

    Google Scholar 

  18. Kashou, A.H., Basit, H., Malik, A.: St segment. In: StatPearls [Internet]. StatPearls Publishing (2021)

    Google Scholar 

  19. Khoury, S., et al.: Incidence, characteristics and outcomes in very young patients with ST segment elevation myocardial infarction. Coronary Artery Dis. 31(2), 103–108 (2020)

    Article  Google Scholar 

  20. Kop, W.J., et al.: Effects of mental stress on coronary epicardial vasomotion and flow velocity in coronary artery disease: relationship with hemodynamic stress responses. J. Am. Coll. Cardiol. 37(5), 1359–1366 (2001)

    Article  Google Scholar 

  21. Laudato, G., et al.: Combining rhythmic and morphological ECG features for automatic detection of atrial fibrillation. In: 13th International Conference on Health Informatics, pp. 156–165 (2020)

    Google Scholar 

  22. Laudato, G., Picariello, F., Scalabrino, S., Tudosa, I., de Vito, L., Oliveto, R.: Morphological classification of heartbeats in compressed ECG. In: 14th International Conference on Health Informatics, HEALTHINF 2021-Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, pp. 386–393. SciTePress (2021)

    Google Scholar 

  23. Laudato, G., et al.: Combining rhythmic and morphological ECG features for automatic detection of atrial fibrillation: local and global prediction models. In: Ye, X., et al. (eds.) BIOSTEC 2020. CCIS, vol. 1400, pp. 425–441. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72379-8_21

    Chapter  Google Scholar 

  24. Laudato, G., et al.: Identification of r-peak occurrences in compressed ECG signals. In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2020)

    Google Scholar 

  25. Laudato, G., et al.: Simulating the doctor’s behaviour: a preliminary study on the identification of atrial fibrillation through combined analysis of heart rate and beat morphology, pp. 446–453 (2022). https://doi.org/10.5220/0010823900003123

  26. Laudato, G., et al.: Atticus: ambient-intelligent tele-monitoring and telemetry for incepting and catering over human sustainability. Front. Hum. Dyn. 19 (2021)

    Google Scholar 

  27. Leonarduzzi, R.F., Schlotthauer, G., Torres, M.E.: Wavelet leader based multifractal analysis of heart rate variability during myocardial ischaemia. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 110–113. IEEE (2010)

    Google Scholar 

  28. Li, T., Zhou, M.: ECG classification using wavelet packet entropy and random forests. Entropy 18(8), 285 (2016)

    Article  Google Scholar 

  29. Maglaveras, N., Stamkopoulos, T., Pappas, C., Strintzis, M.G.: An adaptive backpropagation neural network for real-time ischemia episodes detection: development and performance analysis using the European ST-T database. IEEE Trans. Biomed. Eng. 45(7), 805–813 (1998)

    Article  Google Scholar 

  30. Mattioli, A.V., Nasi, M., Cocchi, C., Farinetti, A.: COVID-19 outbreak: impact of the quarantine-induced stress on cardiovascular disease risk burden (2020)

    Google Scholar 

  31. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  32. Picariello, F., Iadarola, G., Balestrieri, E., Tudosa, I., De Vito, L.: A novel compressive sampling method for ECG wearable measurement systems. Measurement 167, 108259 (2021)

    Article  Google Scholar 

  33. Quwaider, M., Biswas, S.: On-body packet routing algorithms for body sensor networks. In: 2009 First International Conference on Networks & Communications, pp. 171–177. IEEE (2009)

    Google Scholar 

  34. Ravelomanantsoa, A., Rabah, H., Rouane, A.: Compressed sensing: a simple deterministic measurement matrix and a fast recovery algorithm. IEEE Trans. Instrum. Meas. 64(12), 3405–3413 (2015)

    Article  Google Scholar 

  35. Rehman, A., Saba, T., Haseeb, K., Larabi Marie-Sainte, S., Lloret, J.: Energy-efficient IoT e-health using artificial intelligence model with homomorphic secret sharing. Energies 14(19), 6414 (2021)

    Article  Google Scholar 

  36. Rghioui, A., Lloret, J., Harane, M., Oumnad, A.: A smart glucose monitoring system for diabetic patient. Electronics 9(4), 678 (2020)

    Article  Google Scholar 

  37. Rosa, G., Laudato, G., Colavita, A.R., Scalabrino, S., Oliveto, R.: Automatic real-time beat-to-beat detection of arrhythmia conditions. In: HEALTHINF, pp. 212–222 (2021)

    Google Scholar 

  38. Rosa, G., Russodivito, M., Laudato, G., Colavita, A.R., Scalabrino, S., Oliveto, R.: A robust approach for a real-time accurate screening of ST segment anomalies. In: HEALTHINF, pp. 69–80 (2022)

    Google Scholar 

  39. Rosa, G., Russodivito, M., Laudato, G., Scalabrino, S., Colavita, A.R., Oliveto, R.: A multi-class approach for the automatic detection of congestive heart failure in windowed ECG. Stud. Health Technol. Inform. 290, 650–654 (2022)

    Google Scholar 

  40. Rosengren, A., et al.: Association of psychosocial risk factors with risk of acute myocardial infarction in 11 119 cases and 13 648 controls from 52 countries (the INTERHEART study): case-control study. Lancet 364(9438), 953–962 (2004)

    Article  Google Scholar 

  41. Ryu, K.S., Bae, J.W., Jeong, M.H., Cho, M.C., Ryu, K.H., Investigators, K.A.M.I.R., et al.: Risk scoring system for prognosis estimation of multivessel disease among patients with ST-segment elevation myocardial infarction. Int. Heart J.60(3), 708–714 (2019)

    Google Scholar 

  42. Srivastava, J., Routray, S., Ahmad, S., Waris, M.M.: Internet of medical things (iomt)-based smart healthcare system: trends and progress. Comput. Intell. Neurosci. 2022 (2022)

    Google Scholar 

  43. Taddei, A., et al.: The European ST-T database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. Eur. Heart J. 13(9), 1164–1172 (1992)

    Article  Google Scholar 

  44. Tsuji, H., Shiojima, I.: Increased incidence of ECG abnormalities in the general population during the COVID-19 pandemic. Int. Heart J. 63(4), 678–682 (2022)

    Article  Google Scholar 

  45. Wang, H., et al.: ST segment change classification based on multiple feature extraction using ECG. In: 2018 Computing in Cardiology Conference (CinC), vol. 45, pp. 1–4. IEEE (2018)

    Google Scholar 

  46. Wei, W., Qi, Y.: Information potential fields navigation in wireless ad-hoc sensor networks. Sensors 11, 4794–4807 (2011)

    Article  Google Scholar 

  47. Xiao, R., Xu, Y., Pelter, M.M., Mortara, D.W., Hu, X.: A deep learning approach to examine ischemic ST changes in ambulatory ECG recordings. AMIA Summits Transl. Sci. Proc. 2018, 256 (2018)

    Google Scholar 

  48. Zhao, Q., Zhang, L.: ECG feature extraction and classification using wavelet transform and support vector machines. In: 2005 International Conference on Neural Networks and Brain, vol. 2, pp. 1089–1092. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Laudato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosa, G. et al. (2023). ST-Segment Anomalies Detection from Compressed Sensing Based ECG Data by Means of Machine Learning. In: Roque, A.C.A., et al. Biomedical Engineering Systems and Technologies. BIOSTEC 2022. Communications in Computer and Information Science, vol 1814. Springer, Cham. https://doi.org/10.1007/978-3-031-38854-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38854-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38853-8

  • Online ISBN: 978-3-031-38854-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics