Skip to main content

Soft Electroactive Suction Cup with Dielectric Elastomer Actuators for Soft Robotics

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Soft grippers, made of flexible and deformable materials, are used to grasp and manipulate objects and represent a rapidly growing area in the field of soft robotics. Inspired by nature, biomimetic soft grippers are designed to mimic the gripping and manipulation capabilities of biological organisms, such as octopus tentacles or human fingers. These grippers use soft and flexible materials that can conform to the shape of objects and provide gentle, yet strong gripping forces. For the design and actuation of such a gripper, dielectric elastomer actuators (DEAs) are suitable candidates, as they are made of thin elastomer layers sandwiched between compliant electrode layers. They are, hence, at the same time elastic, deformable and capable of performing actuation. In this paper, we present the development of an electroactive suction cup made with DEAs. We explain the novel concept and design of the soft backbone and its necessity for the suction mechanism. We present a demonstrator and characterize the deflection of the membrane under different voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, J., Liu, L., Liu, Y., Leng, J.: Dielectric Elastomer Spring-Roll Bending Actuators: Applications in Soft Robotics and Design. Soft Rob. (2019). https://doi.org/10.1089/soro.2018.0037

    Article  Google Scholar 

  2. Esser, F.J., Auth, P., Speck, T.: Artificial Venus Flytraps: A Research Review and Outlook on Their Importance for Novel Bioinspired Materials Systems. Front. Robot. AI (2020). https://doi.org/10.3389/frobt.2020.00075

    Article  Google Scholar 

  3. Xie, R., Su, M., Zhang, Y., Li, M., Zhu, H., Guan, Y.: PISRob: A Pneumatic Soft Robot for Locomoting Like an Inchworm. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, 21.05.2018 - 25.05.2018, pp. 3448–3453. IEEE (2018 - 2018). https://doi.org/10.1109/ICRA.2018.8461189

  4. Hwang, G.W., Lee, H.J., Da Kim, W., Yang, T.-H., Pang, C.: Soft Microdenticles on Artificial Octopus Sucker Enable Extraordinary Adaptability and Wet Adhesion on Diverse Nonflat Surfaces. Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2022). https://doi.org/10.1002/advs.202202978

  5. Kappel, P., Kramp, C., Speck, T., Tauber, F.J.: Application-Oriented Comparison of Two 3D Printing Processes for the Manufacture of Pneumatic Bending Actuators for Bioinspired Macroscopic Soft Gripper Systems. In: Hunt, A., Vouloutsi, V., Moses, K., Quinn, R., Mura, A., Prescott, T., Verschure, P.F.M.J. (eds.) Biomimetic and Biohybrid Systems, vol. 13548. Lecture Notes in Computer Science, pp. 54–67. Springer International Publishing, Cham (2022)

    Google Scholar 

  6. El-Atab, N., et al.: Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems (2020). https://doi.org/10.1002/aisy.202000128

    Article  Google Scholar 

  7. Shintake, J., Cacucciolo, V., Floreano, D., Shea, H.: Soft Robotic Grippers. Adv. Mater. (2018). https://doi.org/10.1002/adma.201707035

    Article  Google Scholar 

  8. Bogue, R.: Artificial muscles and soft gripping: a review of technologies and applications. Ind. Robot. (2012). https://doi.org/10.1108/01439911211268642

    Article  Google Scholar 

  9. Carpi, F. (ed.): Dielectric elastomers as electromechanical transducers. Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, Amsterdam (2008)

    Google Scholar 

  10. Ji, X., et al.: Untethered Feel-Through Haptics Using 18-µm Thick Dielectric Elastomer Actuators. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202006639

    Article  Google Scholar 

  11. Wang, Y., et al.: Dielectric elastomer actuators for artificial muscles: A comprehensive review of soft robot explorations. Resources Chemicals and Materials (2022). https://doi.org/10.1016/j.recm.2022.09.001

    Article  Google Scholar 

  12. Tramacere, F., Beccai, L., Kuba, M., Gozzi, A., Bifone, A., Mazzolai, B.: The morphology and adhesion mechanism of Octopus vulgaris suckers. PLoS ONE (2013). https://doi.org/10.1371/journal.pone.0065074

    Article  Google Scholar 

  13. Kier, W.M., Smith, A.M.: The structure and adhesive mechanism of octopus suckers. Integr. Comp. Biol. (2002). https://doi.org/10.1093/icb/42.6.1146

    Article  Google Scholar 

  14. Baik, S., Da Kim, W., Park, Y., Lee, T.-J., Ho Bhang, S., Pang, C.: A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature (2017). https://doi.org/10.1038/nature22382

    Article  Google Scholar 

  15. Baik, S., Kim, J., Lee, H.J., Lee, T.H., Pang, C.: Highly Adaptable and Biocompatible Octopus-Like Adhesive Patches with Meniscus-Controlled Unfoldable 3D Microtips for Underwater Surface and Hairy Skin. Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2018). https://doi.org/10.1002/advs.201800100

  16. Chun, S., et al.: Water-Resistant and Skin-Adhesive Wearable Electronics Using Graphene Fabric Sensor with Octopus-Inspired Microsuckers. ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b04206

    Article  Google Scholar 

  17. Follador, M., Tramacere, F., Mazzolai, B.: Dielectric elastomer actuators for octopus inspired suction cups. Bioinspir. Biomim. (2014). https://doi.org/10.1088/1748-3182/9/4/046002

    Article  Google Scholar 

  18. Jamali, A., Knoerlein, R., Goldschmidtboeing, F., Woias, P.: Development of a Scalable Soft Finger Gripper for Soft Robots. In: DEVELOPMENT OF A SCALABLE SOFT FINGER GRIPPER FOR SOFT ROBOTS. Hilton Head Workshop 2022: A Solid-State Sensors, Actuators and Microsystems Work-shop, Hilton Head, USA (2022)

    Google Scholar 

  19. Ma, J., et al.: A Haptic Feedback Actuator Suitable for the Soft Wearable Device. Appl. Sci. (2020). https://doi.org/10.3390/app10248827

    Article  Google Scholar 

  20. Jamali, A., Knoerlein, R., Goldschmidtboeing, F., Woias, P.: Development and Characterization of a Soft Bending Actuator. In: Hunt, A., Vouloutsi, V., Moses, K., Quinn, R., Mura, A., Prescott, T., Verschure, P.F.M.J. (eds.) Biomimetic and Biohybrid Systems, vol. 13548. Lecture Notes in Computer Science, pp. 152–156. Springer International Publishing, Cham (2022)

    Google Scholar 

  21. KauPo Plankenhorn e.K.: ECOFLEX® SERIE (2020)

    Google Scholar 

Download references

Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1 – 390951807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Jamali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamali, A., Mishra, D.B., Sriperumbuduri, P., Knoerlein, R., Goldschmidtboeing, F., Woias, P. (2023). Soft Electroactive Suction Cup with Dielectric Elastomer Actuators for Soft Robotics. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics