Skip to main content

Comparison of Proximal Leg Strain in Locomotor Model Organisms Using Robotic Legs

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Insects use various sensory organs to monitor proprioceptive and exteroceptive information during walking. The measurement of forces in the exoskeleton is facilitated by campaniform sensilla (CS), which monitor resisted muscle forces through the detection of exoskeletal strains. CS are commonly found in leg segments arranged in fields, groups, or as single units. Most insects have the highest density of sensor locations on the trochanter, a proximal leg segment. CS are arranged homologously across species, suggesting comparable functions despite noted morphological differences. Furthermore, the trochanter–femur joint is mobile in some species and fused in others. To investigate how different morphological arrangements influence strain sensing in different insect species, we utilized two robotic models of the legs of the fruit fly Drosophila melanogaster and the stick insect Carausius morosus. Both insect species are past and present model organisms for unraveling aspects of motor control, thus providing extensive information on sensor morphology and, in-part, function. The robotic models were dynamically scaled to the legs of the insects, with strain gauges placed with correct orientations according to published data. Strains were detected during stepping on a treadmill, and the sensor locations and leg morphology played noticeable roles in the strains that were measured. Moreover, the sensor locations that were absent in one species relative to the other measured strains that were also being measured by the existing sensors. These findings contributed to our understanding of load sensing in animal locomotion and the relevance of sensory organ morphology in motor control.

G. F. Dinges and W. P. Zyhowski—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris, C.M., Dinges, G.F., Haberkorn, A., Gebehart, C., Büschges, A., Zill, S.N.: Gradients in mechanotransduction of force and body weight in insects. Arthropod Struct. Dev. 58, 100970 (2020). https://doi.org/10.1016/j.asd.2020.100970

    Article  Google Scholar 

  2. Zill, S.N., Dallmann, C.J., Büschges, A., Chaudhry, S., Schmitz, J.: Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J. Neurophysiol. 120, 1807–1823 (2018). https://doi.org/10.1152/jn.00371.2018

    Article  Google Scholar 

  3. Cruse, H.: Which parameters control the leg movement of a walking insect?: Ii. The start of the swing phase. J. Exp. Biol. 116, 357–362 (1985). https://doi.org/10.1242/jeb.116.1.357

  4. Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci. 13, 15–21 (1990). https://doi.org/10.1016/0166-2236(90)90057-H

    Article  Google Scholar 

  5. Cruse, H.: The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus. Physiol. Entomol. 4, 121–124 (1979). https://doi.org/10.1111/j.1365-3032.1979.tb00186.x

    Article  Google Scholar 

  6. Dallmann, C.J., Hoinville, T., Dürr, V., Schmitz, J.: A load-based mechanism for inter-leg coordination in insects. Proc. R. Soc. B Biol. Sci. 284, 20171755 (2017). https://doi.org/10.1098/rspb.2017.1755

  7. Noah, J.A., Quimby, L., Frazier, S.F., Zill, S.N.: Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches. J. Comp. Physiol. A 190, 201–215 (2004). https://doi.org/10.1007/s00359-003-0487-y

    Article  Google Scholar 

  8. Zill, S., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Struct. Dev. 33, 273–286 (2004). https://doi.org/10.1016/j.asd.2004.05.005

    Article  Google Scholar 

  9. Noah, A.J., Quimby, L., Frazier, F.S., Zill, S.N.: Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. J. Comp. Physiol. A 187, 769–784 (2001). https://doi.org/10.1007/s00359-001-0247-9

    Article  Google Scholar 

  10. Kemmerling, S., Varju, D.: Regulation of the body-substrat-distance in the stick insect: responses to sinusoidal stimulation. Biol. Cybern. 39, 129–137 (1981). https://doi.org/10.1007/BF00336739

    Article  Google Scholar 

  11. Pearson, K.G.: Central programming and reflex control of walking in the cockroach. J. Exp. Biol. 56, 173–193 (1972)

    Article  Google Scholar 

  12. Zill, S.N., Keller, B.R., Duke, E.R.: Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. J. Neurophysiol. 101, 2297–2304 (2009). https://doi.org/10.1152/jn.00056.2009

    Article  Google Scholar 

  13. Zill, S., Moran, D.T.: The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle-generated forces in the American cockroach, Periplaneta Americana. J. Exp. Biol. 91(1), 1–24 (1981)

    Google Scholar 

  14. Pringle, J.W.S.: Proprioception in insects: I. A new type of mechanical receptor from the palps of the cockroach. J. Exp. Biol. 15, 101–113 (1938)

    Google Scholar 

  15. Dinges, G.F., Chockley, A.S., Bockemühl, T., Ito, K., Blanke, A., Büschges, A.: Location and arrangement of campaniform sensilla in Drosophila melanogaster. J. Comp. Neurol. 529, 905–925 (2021). https://doi.org/10.1002/cne.24987

    Article  Google Scholar 

  16. Grünert, U., Gnatzy, W.: Campaniform sensilla of Calliphora vicina (Insecta, Diptera). Zoomorphology 106, 320–328 (1987). https://doi.org/10.1007/BF00312006

    Article  Google Scholar 

  17. Merritt, D.J., Murphey, R.K.: Projections of leg proprioceptors within the CNS of the fly Phormia in relation to the generalized insect ganglion. J. Comp. Neurol. 322, 16–34 (1992). https://doi.org/10.1002/cne.903220103

    Article  Google Scholar 

  18. Yasuyama, K., Salvaterra, P.M.: Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc. Res. Tech. 45, 65–79 (1999). https://doi.org/10.1002/(sici)1097-0029(19990415)45:2%3C65::aid-jemt2%3E3.0.co;2-0

    Article  Google Scholar 

  19. Delcomyn, F.: Activity and directional sensitivity of leg campaniform sensilla in a stick insect. J. Comp. Physiol. A 168, 113–119 (1991). https://doi.org/10.1007/BF00217109

    Article  Google Scholar 

  20. Hofmann, T., Bässler, U.: Response characteristics of single trochanteral campaniform sensilla in the stick insect, Cuniculina impigra. Physiol. Entomol. 11, 17–21 (1986). https://doi.org/10.1111/j.1365-3032.1986.tb00386.x

    Article  Google Scholar 

  21. Tuthill, J.C., Wilson, R.I.: Mechanosensation and adaptive motor control in insects. Curr. Biol. CB. 26, R1022–R1038 (2016). https://doi.org/10.1016/j.cub.2016.06.070

    Article  Google Scholar 

  22. Kaliyamoorthy, S., Zill, S.N., Quinn, R.D., Ritzmann, R.E., Choi, J.: finite element analysis of strains in a Blaberus cockroach leg during climbing. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium (Cat. No.01CH37180), pp. 833–838. IEEE, Maui, HI, USA (2001). https://doi.org/10.1109/IROS.2001.976272

  23. Akay, T., Haehn, S., Schmitz, J., Büschges, A.: Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J. Neurophysiol. 92, 42–51 (2004). https://doi.org/10.1152/jn.01271.2003

    Article  Google Scholar 

  24. Marquardt, F.: Beiträge zur Anatomie der Muskulatur und der peripheren Nerven von Carausius Dixippus morosus Br.; Mit 5 Abb. im Text u. Taf (1939)

    Google Scholar 

  25. Zill, S.N., Schmitz, J., Chaudhry, S., Büschges, A.: Force encoding in stick insect legs delineates a reference frame for motor control. J. Neurophysiol. 108, 1453–1472 (2012). https://doi.org/10.1152/jn.00274.2012

    Article  Google Scholar 

  26. Hofmann, T., Bässler, U.: Anatomy and physiology of trochanteral campaniform sensilla in the stick insect, Cuniculina impigra. Physiol. Entomol. 7, 413–426 (1982). https://doi.org/10.1111/j.1365-3032.1982.tb00317.x

    Article  Google Scholar 

  27. Schmitz, J.: Load-compensating reactions in the proximal leg joints of stick insects during standing and walking. J. Exp. Biol. 183(1), 15–33 (1993)

    Google Scholar 

  28. Zill, S.N., Neff, D., Chaudhry, S., Exter, A., Schmitz, J., Büschges, A.: Effects of force detecting sense organs on muscle synergies are correlated with their response properties. Arthropod Struct. Dev. 46, 564–578 (2017). https://doi.org/10.1016/j.asd.2017.05.004

    Article  Google Scholar 

  29. Bässler, U.: A movement generated in the peripheral nervous system: rhythmic flexion by autotomized legs of the stick insect Cuniculina impigra. J. Exp. Biol. 111, 191–199 (1984)

    Article  Google Scholar 

  30. Schindler: Funktionsmorphologische Untersuchungen zur Autotomie der Stabheuschrecke Carausius morosus Br. (Insecta: Phasmida). Zool. Anz., vol. 203, no. 316 (1979)

    Google Scholar 

  31. Bordage, E.: XXIII.—On the probable mode of formation of the fusion between the femur and trochanter in Arthropods. J. Nat. History (2009). https://doi.org/10.1080/00222939908678095

  32. Soler, C., Daczewska, M., Da Ponte, J.P., Dastugue, B., Jagla, K.: Coordinated development of muscles and tendons of the Drosophila leg. Development 131, 6041 (2004). https://doi.org/10.1242/dev.01527

    Article  Google Scholar 

  33. Lobato-Rios, V., Ramalingasetty, S.T., Özdil, P.G., Arreguit, J., Ijspeert, A.J., Ramdya, P.: NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. Nat. Methods. 19, 620–627 (2022). https://doi.org/10.1038/s41592-022-01466-7

    Article  Google Scholar 

  34. Goldsmith, C.A., Haustein, M., Bockemühl, T., Büschges, A., Szczecinski, N.S.: Analyzing 3D limb kinematics of drosophila melanogaster for robotic platform development. In: Hunt, A., et al. (eds.) Biomimetic and Biohybrid Systems, vol. 13548, pp. 111–122. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-20470-8_12

  35. Sink, H.: Muscle Development in Drosophila. Springer, New York, NY (2006). https://doi.org/10.1007/0-387-32963-3

  36. Dallmann, C.J., Dürr, V., Schmitz, J.: Motor control of an insect leg during level and incline walking. J. Exp. Biol. 222 (2019). https://doi.org/10.1242/jeb.188748

  37. Akay, T., Ludwar, B.C., Göritz, M.L., Schmitz, J., Büschges, A.: Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J. Neurosci. 27, 3285–3294 (2007). https://doi.org/10.1523/JNEUROSCI.5202-06.2007

    Article  Google Scholar 

  38. Zill, S.N., Moran, D.T.: The exoskeleton and insect proprioception: III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta Americana. J. Exp. Biol. 94, 57 (1981)

    Google Scholar 

  39. Goldsmith, C., Szczecinski, N., Quinn, R.: Drosophibot: a fruit fly inspired bio-robot. In: Biomimetic and Biohybrid Systems. Living Machines 2019. LNCS, vol. 11556, pp. 146–157. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24741-6_13

  40. Zyhowski, W.P., Zill, S.N., Szczecinski, N.S.: Adaptive load feedback robustly signals force dynamics in robotic model of Carausius morosus stepping. Front. Neurorobot. 17, 1125171 (2023). https://doi.org/10.3389/fnbot.2023.1125171

    Article  Google Scholar 

  41. Onyx - Composite 3D Printing Material. https://markforged.com/materials/plastics/onyx. Accessed 22 Feb 2023

  42. Haberkorn, A., Gruhn, M., Zill, S.N., Büschges, A.: Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect. J. Comp. Physiol. A 205(2), 253–270 (2019). https://doi.org/10.1007/s00359-019-01334-4

    Article  Google Scholar 

  43. Delcomyn, F., Nelson, M.E., Cocatre-Zilgien, J.H.: Sense organs of insect legs and the selection of sensors for agile walking robots. Int. J. Robot. Res. 15, 113–127 (1996). https://doi.org/10.1177/027836499601500201

    Article  Google Scholar 

  44. Bennemann, M., Baumgartner, W., Bräunig, P.-M.: Biomimicry of the adhesive organs of stick insects (Carausius morosus). Fachgruppe Biologie (2015)

    Google Scholar 

  45. Garcia, M., Kuo, A., Peattie, A., Wang, P., Full, R.J.: Damping and size: insights and biological inspiration. Presented at First International Symposium on Adaptive Motion of Animals and Machines (2000)

    Google Scholar 

  46. Hooper, S.L., et al.: Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals. J. Neurosci. 29, 4109–4119 (2009). https://doi.org/10.1523/JNEUROSCI.5510-08.2009

    Article  Google Scholar 

  47. Ache, J.M., Matheson, T.: Passive joint forces are tuned to limb use in insects and drive movements without motor activity. Curr. Biol. 23, 1418–1426 (2013). https://doi.org/10.1016/j.cub.2013.06.024

    Article  Google Scholar 

  48. Cruse, H., Bartling, C.: Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41, 761–771 (1995). https://doi.org/10.1016/0022-1910(95)00032-p

    Article  Google Scholar 

  49. Dickinson, M.H.: Comparison of encoding properties of campaniform sensilla on the fly wing. J. Exp. Biol. 151, 245 (1990)

    Google Scholar 

  50. Berendes, V., Zill, S.N., Büschges, A., Bockemühl, T.: Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J. Exp. Biol. 219, 3781 (2016). https://doi.org/10.1242/jeb.146720

    Article  Google Scholar 

  51. Wosnitza, A., Bockemühl, T., Dübbert, M., Scholz, H., Büschges, A.: Inter-leg coordination in the control of walking speed in Drosophila. J. Exp. Biol. 216, 480 (2013). https://doi.org/10.1242/jeb.078139

    Article  Google Scholar 

Download references

Funding

G.F.D., W.P.Z., C.A.G., and N.S.S. were supported by NSF DBI 2015317 as part of the NSF/CIHR/DFG/FRQ/UKRI-MRC Next Generation Networks for Neuroscience Program. W.P.Z. and N.S.S. were supported by NSF IIS 2113028. G.F.D. was supported by DFG DI 2907/1-1 (Project number 500615768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Szczecinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinges, G.F., Zyhowski, W.P., Goldsmith, C.A., Szczecinski, N.S. (2023). Comparison of Proximal Leg Strain in Locomotor Model Organisms Using Robotic Legs. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics