Skip to main content

Effects of Tarsal Morphology on Load Feedback During Stepping of a Robotic Stick Insect (Carausius Morosus) Limb

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2023)

Abstract

Sensory feedback from sense organs during animal locomotion can be heavily influenced by an organism’s mechanical structure. In insects, the interplay between sensing and mechanics can be demonstrated in the campaniform sensilla (CS) strain sensors located across the exoskeleton. Leg CS are highly sensitive to the loading state of the limb. In walking, loading is primarily influenced by ground reaction forces (GRF) mediated by the foot, or tarsus. The complex morphology of the tarsus provides compliance, passive and active substrate grip, and an increased moment arm for the GRF, all of which impact leg loading and the resulting CS discharge. To increase the biomimicry of robots we use to study strain feedback during insect walking, we have developed a series of tarsi for our robotic model of a Carausius morosus middle leg. We seek the simplest design that mimics tarsus functionality. Tarsi were designed with varying degrees of compliance, passive grip, and biomimetic structure. We created elastic silicone tarsal joints for several of these models and found that they produced linear stiffness within joint limits across different joint morphologies. Strain gauges positioned in CS locations on the trochanterofemur and tibia recorded strain while the leg stepped on a treadmill. Most, but not all, designs increased axial strain magnitude compared to previous data with no tarsus. Every tarsus design produced positive transversal strain in the tibia, indicating axial torsion in addition to bending. Sudden increases in tibial strain reflected leg slipping during stance. This data show how different aspects of the tarsus may mediate leg loading, allowing us to improve the mechanical biomimicry of future robotic test platforms.

Supported by NSF/DBI NeuroNex 2015317 to NSS, DFG Bu857/125-1 to AB, NSF CRCNS 2113028 to NSS and SNZ, and DFG DI 2907/1-1 (Project number 500615768, grant no. 233886668/GRK1960) to GFD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, J.: Adaptive features on the tarsi of cockroaches (Insecta: Dictyoptera). Int. J. Insect. Morphol. 3(3/4), 317–334 (1974). https://doi.org/10.1016/j.ymeth.2019.07.013

    Article  Google Scholar 

  2. Bässler, U.: Neural Basis of Elementary Behavior in Stick Insects. Springer, Berlin (1983). https://doi.org/10.1007/978-3-642-68813-3_6

  3. Bennemann, M.: Biomimicry of the adhesive organs of stick insects (Carausius morosus). Ph.D. thesis, RWTH Aachen University (2015)

    Google Scholar 

  4. Bidaye, S.S., Bockemühl, T., Büschges, A.: Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. J. Neurophysiol. 119(2) (2018). https://doi.org/10.1152/jn.00658.2017

  5. Buschmann, T., Ewald, A., von Twickel, A., Büschges, A.: Controlling legs for locomotion-insights from robotics and neurobiology. Bioinspir. Biomim. 10(4), 41001 (2015). https://doi.org/10.1088/1748-3190/10/4/041001

    Article  Google Scholar 

  6. Bußhardt, P., Gorb, S.N., Wolf, H.: Activity of the claw retractor muscle in stick insects in wall and ceiling situations. J. Exp. Biol. 214(10), 1676–1684 (2011). https://doi.org/10.1242/jeb.051953

    Article  Google Scholar 

  7. Bußhardt, P., Wolf, H., Gorb, S.N.: Adhesive and frictional properties of tarsal attachment pads in two species of stick insects (Phasmatodea) with smooth and nubby euplantulae. Zoology 115(3), 135–141 (2012). https://doi.org/10.1016/j.zool.2011.11.002, http://dx.doi.org/10.1016/j.zool.2011.11.002

  8. van Casteren, A., Codd, J.R.: Foot morphology and substrate adhesion in the Madagascan hissing cockroach, Gromphadorhina portentosa. J. Insect. Sci. 10(1), 1–12 (2010). https://doi.org/10.1673/031.010.4001

    Article  Google Scholar 

  9. Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci. 20(12), 553–557 (1997). https://doi.org/10.1016/S0166-2236(97)01149-1

    Article  Google Scholar 

  10. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Scarano, V., Chiara, R.D., Erra, U. (eds.) Eurographics Italian Chapter Conference. The Eurographics Association (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

  11. Clemente, C.J., Dirks, J.H., Barbero, D.R., Steiner, U., Federle, W.: Friction ridges in cockroach climbing pads: Anisotropy of shear stress measured on transparent, microstructured substrates. J. Comp. Physiol. A 195(9), 805–814 (2009). https://doi.org/10.1007/s00359-009-0457-0

    Article  Google Scholar 

  12. Cruse, H., Bartling, C.: Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41(9), 761–771 (1995). https://doi.org/10.1016/0022-1910(95)00032-P

    Article  Google Scholar 

  13. Delcomyn, F.: Activity and directional sensitivity of leg campaniform sensilla in a stick insect. J. Comp. Physiol. A 168(1), 113–119 (1991). https://doi.org/10.1007/BF00217109

    Article  Google Scholar 

  14. Delcomyn, F., Nelson, M.E., Cocatre-Zilgien, J.H.: Sense organs of insect legs and the selection of sensors for agile walking robots. Int. J. Robot. Res. 15(2), 113–127 (1996). https://doi.org/10.1177/027836499601500201

    Article  Google Scholar 

  15. Dinges, G.F., Bockemühl, T., Iacoviello, F., Shearing, P.R., Büschges, A., Blanke, A.: Ultra high-resolution biomechanics suggest that substructures within insect mechanosensors decisively affect their sensitivity. J. Roy. Soc. Interface 19(190), 20220102 (2022). https://doi.org/10.1098/rsif.2022.0102

    Article  Google Scholar 

  16. Frazier, S.F., et al.: Elasticity and movements of the cockroach tarsus in walking. J. Comp. Physiol. A 185(2), 157–172 (1999). https://doi.org/10.1007/s003590050374

    Article  Google Scholar 

  17. Goldsmith, C.A., Szczecinski, N.S., Quinn, R.D.: Neurodynamic modeling of the fruit fly Drosophila melanogaster. Bioinspir. Biomim. 15(6) (2020). https://doi.org/10.1088/1748-3190/ab9e52

  18. Goldsmith, C., Quinn, R.D., Szczecinski, N.S.: Investigating the role of low level reinforcement reflex loops in insect locomotion. Bioinspir. Biomim. 16, 065008 (2021). https://doi.org/10.1088/1748-3190/ac28ea

    Article  Google Scholar 

  19. Gorb, S.N.: Design of insect unguitractor apparatus. J. Morphol. 230(2), 219–230 (1996). https://doi.org/10.1002/(SICI)1097-4687(199611)230:2<219::AID-JMOR8>3.0.CO;2-B

  20. Harris, C.M., Szczecinski, N.S., Büschges, A., Zill, S.N.: Sensory signals of unloading in insects are tuned to distinguish leg slipping from load variations in gait: experimental and modeling studies. J. Neurophysiol. 128(5), 790–807 (2022). https://doi.org/10.1152/jn.00285.2022

    Article  Google Scholar 

  21. Kohsaka, H., Nose, A.: Optogenetics in Drosophila. Adv. Exp. Med. Biol. 1293, 309–320 (2021). https://doi.org/10.1016/j.ymeth.2019.07.013

    Article  Google Scholar 

  22. Larsen, G.S., Frazier, S.F., Zill, S.N.: The tarso-pretarsal chordotonal organ as an element in cockroach walking. J. Comp. Physiol. A 180(6), 683–700 (1997). https://doi.org/10.1007/s003590050083

    Article  Google Scholar 

  23. Liessem, S., et al.: Behavioral state-dependent modulation of insulin-producing cells in Drosophila. Curr. Biol. 33(3), 449-463.e5 (2023). https://doi.org/10.1016/j.cub.2022.12.005

    Article  Google Scholar 

  24. Manoonpong, P., et al.: Insect-inspired robots: bridging biological and artificial systems. Sensors 21(22), 1–44 (2021). https://doi.org/10.3390/s21227609

    Article  Google Scholar 

  25. Merritt, D.J., Murphey, R.K.: Projections of leg proprioceptors within the CNS of the fly phormia in relation to the generalized insect ganglion. J. Comp. Neurol. 322(1), 16–34 (1992). https://doi.org/10.1002/cne.903220103

    Article  Google Scholar 

  26. Moran, D.T., Chapman, K.M., Ellis, R.A.: The fine structure of cockroach campaniform sensilla. J. Cell Biol. 48(1), 155–173 (1971). https://doi.org/10.1083/jcb.48.1.155

    Article  Google Scholar 

  27. Noah, A.J., Quimby, L., Frazier, F.S., Zill, S.N.: Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. J. Comp. Physiol. - Sens. Neural Behav. Physiol. 187(10), 769–784 (2001). https://doi.org/10.1007/s00359-001-0247-9

    Article  Google Scholar 

  28. Pfeifer, R., Iida, F., Gómez, G.: Morphological computation for adaptive behavior and cognition. Int. Congr. Ser. 1291, 22–29 (2006). https://doi.org/10.1016/j.ics.2005.12.080

    Article  Google Scholar 

  29. Radnikow, G., Bässler, U.: Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis muscle in stick insects is tripartite and has no antagonist. J. Exp. Biol. 157(1), 87–99 (1991). https://doi.org/10.1242/jeb.157.1.87

    Article  Google Scholar 

  30. Ridgel, A.L., Frazier, S.F., Zill, S.N.: Dynamic responses of tibial campaniform sensilla studied by substrate displacement in freely moving cockroaches. J. Comp. Physiol. A 187(5), 405–420 (2001). https://doi.org/10.1007/s003590100213

    Article  Google Scholar 

  31. Ritzmann, R.E., Quinn, R.D., Watson, J.T., Zill, S.N.: Insect walking and biorobotics: a relationship with mutual benefits. Bioscience 50(1), 23–33 (2000). https://doi.org/10.1641/0006-3568(2000)050[0023:IWABAR]2.3.CO;2

    Article  Google Scholar 

  32. Scheffer, L.K., et al.: A connectome and analysis of the adult Drosophila central brain. eLife 9, 1–74 (2020). https://doi.org/10.7554/ELIFE.57443

  33. Szczecinski, N.S., Dallmann, C.J., Quinn, R.D., Zill, S.N.: A computational model of insect campaniform sensilla predicts encoding of forces during walking. Bioinspir. Biomim. 16(6) (2021). https://doi.org/10.1088/1748-3190/ac1ced

  34. Tajiri, R., Misaki, K., Yonemura, S., Hayashi, S.: Joint morphology in the insect leg: evolutionary history inferred from Notch loss-of-function phenotypes in Drosophila. Development 138(21), 4621–4626 (2011). https://doi.org/10.1242/dev.067330

    Article  Google Scholar 

  35. Tran-Ngoc, P.T., Lim, L.Z., Gan, J.H., Wang, H., Vo-Doan, T.T., Sato, H.: A robotic leg inspired from an insect leg. Bioinspir. Biomim. 17(5) (2022). https://doi.org/10.1088/1748-3190/ac78b5

  36. Zill, S.N., Moran, D.T.: The exoskeleton and insect proprioception III. Activity of tibial campaniform sensilla during walking in the American cockroach, Periplaneta americana. J. Exp. Biol. 94, 57–75 (1981)

    Google Scholar 

  37. Zill, S., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod. Struct. Dev. 33(3), 273–286 (2004). https://doi.org/10.1016/j.asd.2004.05.005

    Article  Google Scholar 

  38. Zill, S.N., Büschges, A., Schmitz, J.: Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J. Comp. Physiol. A 197(8), 851–867 (2011). https://doi.org/10.1007/s00359-011-0647-4

    Article  Google Scholar 

  39. Zill, S.N., Chaudhry, S., Büschges, A., Schmitz, J.: Force feedback reinforces muscle synergies in insect legs. Arthropod. Struct. Dev. 44(6), 541–553 (2015). https://doi.org/10.1016/j.asd.2015.07.001

    Article  Google Scholar 

  40. Zill, S.N., Chaudhry, S., Exter, A., Büschges, A., Schmitz, J.: Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod. Struct. Dev. 43(5), 441–455 (2014). https://doi.org/10.1016/j.asd.2014.06.002

    Article  Google Scholar 

  41. Zill, S.N., Ridgel, A.L., DiCaprio, R.A., Frazier, S.: Load signalling by cockroach trochanteral campaniform sensilla. Brain Res. 822(1), 271–275 (1999). https://doi.org/10.1016/S0006-8993(99)01156-7

    Article  Google Scholar 

  42. Zyhowski, W.P., Zill, S.N., Szczecinski, N.S.: Adaptive load feedback robustly signals force dynamics in robotic model of Carausius morosus stepping. Front. Neurorobot. 17(January) (2023). https://doi.org/10.3389/fnbot.2023.1125171

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarus A. Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goldsmith, C.A., Zyhowski, W.P., Büschges, A., Zill, S.N., Dinges, G.F., Szczecinski, N.S. (2023). Effects of Tarsal Morphology on Load Feedback During Stepping of a Robotic Stick Insect (Carausius Morosus) Limb. In: Meder, F., Hunt, A., Margheri, L., Mura, A., Mazzolai, B. (eds) Biomimetic and Biohybrid Systems. Living Machines 2023. Lecture Notes in Computer Science(), vol 14157. Springer, Cham. https://doi.org/10.1007/978-3-031-38857-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38857-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38856-9

  • Online ISBN: 978-3-031-38857-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics