Abstract
Photographs and 3D reconstructions of buildings as well as textual information and documents play an important role in art history and architectural studies when it comes to investigating architecture, the construction history of buildings, and the impact these constructions had on a city. Advanced tools have the potential to enhance and support research workflows and source criticism by linking corresponding materials and annotations, such that relevant data can be quickly queried and identified. Images are a primary source in the 3D reconstruction process, with the possibility to create spatializations of additional photographs of buildings which were not part of the initial SfM process, enabling the linking of annotations between these photographs and the respective 3D model. In contrast, identifying and locating respective annotations in text sources requires a different approach due to their more abstract nature. This paper presents concepts for automatic linking of texts and their respective annotations to corresponding images, as well as to 3D models and their annotations. Controlled vocabularies for architectural elements and a graph representation are utilized to reduce ambiguity when querying related instances.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Change history
02 September 2023
A correction has been published.
References
Abe, S., Elsner, J.: Introduction: some stakes of comparison. In: Comparativism in Art History, pp. 1–15. Routledge (2017). https://doi.org/10.1109/BigData47090.2019.9005633
Agosti, M., Ferro, N.: A formal model of annotations of digital content. ACM Trans. Inf. Syst. 26(1), 3-es (2007). https://doi.org/10.1145/1292591.1292594
Agosti, M., Ferro, N., Orio, N.: Annotating illuminated manuscripts: an effective tool for research and education. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2005, pp. 121–130. ACM, New York, NY, USA (2005). https://doi.org/10.1145/1065385.1065412
Baca, M., Gill, M.: Encoding multilingual knowledge systems in the digital age: the Getty vocabularies. In: Smiraglia, R.P. (ed.) Proceedings from North American Symposium on Knowledge Organization, vol. 5, pp. 41–63 (2015). https://doi.org/10.7152/nasko.v5i1.15179
Baker, S., Kiela, D., Korhonen, A.: Robust text classification for sparsely labelled data using multi-level embeddings. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2333–2343. The COLING 2016 Organizing Committee, Osaka, Japan, December 2016
Beaudoin, J.E.: An investigation of image users across professions: a framework of their image needs, Retrieval and Use. Ph.D. thesis, Drexel University Philadelphia (2009)
Bekiari, C., et al.: Definition of the CIDOC conceptual reference model v7.1.1. In: The CIDOC Conceptual Reference Model Special Interest Group (2021). https://doi.org/10.26225/FDZH-X261
Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3615–3620. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1371
Bernhauer, D., Nečaskỳ, M., Škoda, P., Klímek, J., Skopal, T.: Open dataset discovery using context-enhanced similarity search. Knowl. Inf. Syst. 64(12), 3265–3291 (2022). https://doi.org/10.1007/s10115-022-01751-z
Bruschke, J., Kröber, C., Maiwald, F., Utescher, R., Pattee, A.: Introducing a multimodal dataset for the research of architectural elements. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLVIII-M-2-2023, 325–331 (2023). https://doi.org/10.5194/isprs-archives-XLVIII-M-2-2023-325-2023
Bruschke, J., Niebling, F., Maiwald, F., Friedrichs, K., Wacker, M., Latoschik, M.E.: Towards browsing repositories of spatially oriented historic photographic images in 3d web environments. In: Proceedings of the 22nd International Conference on 3D Web Technology. Web3D 2017, ACM, New York, NY, USA (2017). https://doi.org/10.1145/3055624.3075947
Bruschke, J., Wacker, M.: Application of a graph database and graphical user interface for the CIDOC CRM. In: Access and Understanding-Networking in the Digital Era. Session J1. The 2014 Annual Conference of CIDOC, the International Committee for Documentation of ICOM (2014)
Chandrasekaran, D., Mago, V.: Evolution of semantic similarity-a survey. ACM Comput. Surv. 54(2), Article 41 (2021). https://doi.org/10.1145/3440755
Chatzakis, M., Mountantonakis, M., Tzitzikas, Y.: RDFsim: similarity-based browsing over dbpedia using embeddings. Information 12(11), 440 (2021). https://doi.org/10.3390/info12110440
Chen, H., Sultan, S.F., Tian, Y., Chen, M., Skiena, S.: Fast and accurate network embeddings via very sparse random projection. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 399–408. ACM (2019). https://doi.org/10.1145/3357384.3357879
Croce, V., Caroti, G., De Luca, L., Jacquot, K., Piemonte, A., Véron, P.: From the semantic point cloud to heritage-building information modeling: a semiautomatic approach exploiting machine learning. Remote Sens. 13(3), 461 (2021). https://doi.org/10.3390/rs13030461
Dewitz, L., et al.: Historical photos and visualizations: potential for research. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W15, 405–412 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W15-405-2019
Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the 20th International Conference on World Wide Web, pp. 577–586. ACM (2011). https://doi.org/10.1145/1963405.1963487
Dürre, S.: Die Skulpturen des Dresdner Zwingers : Untersuchung zur Aufstellung, Ikonographie, zum Stil und zu den Veränderungen 1712–2002. Ph.D. thesis, Technische Universität Dresden (2003)
Ehrmann, M., Hamdi, A., Pontes, E.L., Romanello, M., Doucet, A.: Named entity recognition and classification on historical documents: a survey. arXiv preprint arXiv:2109.11406 (2021). https://doi.org/10.48550/arXiv.2109.11406
Erdmann, M., Maedche, A., Schnurr, H.P., Staab, S.: From manual to semi-automatic semantic annotation: about ontology-based text annotation tools. In: Proceedings of the COLING-2000 Workshop on Semantic Annotation and Intelligent Content, pp. 79–85. International Committee on Computational Linguistics, Centre Universitaire, Luxembourg, August 2000
von Fellenberg, V., Schoen, H.: Externe impulse und interne imperative: Zur bedeutung von provenienzforschung und kulturgutschutz in deutschland für die kunstgeschichte. Kunstchronik. Monatsschrift für Kunstwissenschaft, Museumswesen und Denkmalpflege 69(7), 322–327 (2016)
Fiorucci, M., Khoroshiltseva, M., Pontil, M., Traviglia, A., Del Bue, A., James, S.: Machine learning for cultural heritage: a survey. Pattern Recogn. Lett. 133, 102–108 (2020). https://doi.org/10.1016/j.patrec.2020.02.017
Grilli, E., Farella, E.M., Torresani, A., Remondino, F.: Geometric features analysis for the classification of cultural heritage point clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W15, 541–548 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W15-541-2019
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 855–864. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939754
Handschuh, S., Staab, S.: Annotation for the Semantic Web. IOS Press, Amsterdam (2003)
Harpring, P.: Development of the getty vocabularies: AAT, TGN, ULAN, and CONA. Art Documentation J. Art Libr. Soc. North Am. 29(1), 67–72 (2010). https://doi.org/10.1086/adx.29.1.27949541
Heller, M.: Rethinking historical methods in organization studies: organizational source criticism. Organ. Stud. 44(6), 987–1002 (2023). https://doi.org/10.1177/01708406231156978
Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. NJ, 2nd edn, Pearson/Prentice Hall, Upper Saddle River (2009)
Ko, H., Lee, S., Park, Y., Choi, A.: A survey of recommendation systems: recommendation models, techniques, and application fields. Electronics 11(1) (2022). https://doi.org/10.3390/electronics11010141
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009). https://doi.org/10.1109/MC.2009.263
Koroteev, M.V.: BERT: a review of applications in natural language processing and understanding. arXiv preprint arXiv:2103.11943 (2021). https://doi.org/10.48550/arXiv.2103.11943
Leme, L.A.P., Brauner, D.F., Breitman, K.K., Casanova, M.A., Gazola, A.: Matching object catalogues. Innov. Syst. Softw. Eng. 4, 315–328 (2008). https://doi.org/10.1007/s11334-008-0070-3
Li, S., Cai, H., Kamat, V.R.: Integrating natural language processing and spatial reasoning for utility compliance checking. J. Constr. Eng. Manage. 142(12), 04016074 (2016). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001199
Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. Knowl. Data Eng. 15(4), 871–882 (2003). https://doi.org/10.1109/TKDE.2003.1209005
Livi, L., Rizzi, A.: The graph matching problem. Pattern Anal. Appl. 16(3), 253–283 (2013). https://doi.org/10.1007/s10044-012-0284-8
Lopatin, L.: Library digitization projects, issues and guidelines: a survey of the literature. Library Hi Tech 24(2), 273–289 (2006). https://doi.org/10.1108/07378830610669637
López, F.J., Lerones, P.M., Llamas, J.M., Gómez-García-Bermejo, J., Zalama, E.: Linking HBIM graphical and semantic information through the Getty AAT: practical application to the castle of Torrelobatn. IOP Conf. Ser. Mater. Sci. Eng. 364, 012100 (2018). https://doi.org/10.1088/1757-899X/364/1/012100
Maiwald, F., Henze, F., Bruschke, J., Niebling, F.: Geo-information technologies for a multimodal access on historical photographs and maps for research and communication in urban history. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2/W11, 763–769 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W11-763-2019
Maiwald, F., Bruschke, J., Schneider, D., Wacker, M., Niebling, F.: Giving historical photographs a new perspective: introducing camera orientation parameters as new metadata in a large-scale 4d application. Remote Sens. 15(7), 1879 (2023). https://doi.org/10.3390/rs15071879
Manuel, A., Gattet, E., De Luca, L., Véron, P.: An approach for precise 2D/3D semantic annotation of spacially-oriented images for in-situ visualization applications. In: Digtal Heritage International Congress (2013)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748
Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2022). https://doi.org/10.1109/TPAMI.2021.3059968
Mirza, P., Razniewski, S., Darari, F., Weikum, G.: Enriching knowledge bases with counting quantifiers. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 179–197. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_11
Morbidoni, C., Pierdicca, R., Paolanti, M., Quattrini, R., Mammoli, R.: Learning from synthetic point cloud data for historical buildings semantic segmentation. J. Comput. Cult. Herit. 13(4), Article 34 (2020). https://doi.org/10.1145/3409262
Mozafari, M., Farahbakhsh, R., Crespi, N.: A BERT-based transfer learning approach for hate speech detection in online social media. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 881, pp. 928–940. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36687-2_77
Münster, S., Maiwald, F., Lehmann, C., Lazariv, T., Hofmann, M., Niebling, F.: An automated pipeline for a browser-based, city-scale mobile 4d VR application based on historical images. In: Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia HeritAge Contents, SUMAC 2020, pp. 33–40. ACM, New York, NY, USA (2020). https://doi.org/10.1145/3423323.3425748
Niebling, F., Maiwald, F., Barthel, K., Latoschik, M.E.: 4D augmented city models, photogrammetric creation and dissemination. In: Münster, S., Friedrichs, K., Niebling, F., Seidel-Grzesinska, A. (eds.) UHDL/DECH -2017. CCIS, vol. 817, pp. 196–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76992-9_12
Oren, E., Möller, K.H., Scerri, S., Handschuh, S., Sintek, M.: What are semantic annotations? Relatório técnico. DERI Galway 9, 62 (2006)
Pande, A., Ni, K., Kini, V.: SWAG: item recommendations using convolutions on weighted graphs. In: International Conference on Big Data, pp. 2903–2912. IEEE (2019). https://doi.org/10.1109/BigData47090.2019.9005633
Ramalho, T., et al.: Encoding spatial relations from natural language. arXiv preprint arXiv:1807.01670 (2018). 10.48550/arXiv. 1807.01670
Régimbeau, G.: Image source criticism in the age of the digital humanities. In: Saou-Dufrêne, B. (ed.) Heritage and Digital humanities, pp. 179–194. Lit Verlag (2014)
Ricci, F., Rokach, L., Shapira, B.: Recommender systems: techniques, applications, and challenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook. pp. 1–35. Springer, US, New York, NY, USA (2022). https://doi.org/10.1007/978-1-0716-2197-4_1
Schmidt, S.C., Thiery, F., Trognitz, M.: Practices of linked open data in archaeology and their realisation in Wikidata. Digital 2(3), 333–364 (2022)
Shin, H.J., Park, J.Y., Yuk, D.B., Lee, J.S.: BERT-based spatial information extraction. In: Proceedings of the Third International Workshop on Spatial Language Understanding, pp. 10–17. Association for Computational Linguistics, November 2020. https://doi.org/10.18653/v1/2020.splu-1.2
Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, February 2017. https://doi.org/10.1609/aaai.v31i1.11164
Utescher, R., Patee, A., Maiwald, F., Bruschke, J., Hoppe, S., Münster, S., Niebling, F., Zarrieß, S.: Exploring naming inventories for architectural elements for use in multi-modal machine learning applications. In: Workshop on Computational Methods in the Humanities (2022)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489
Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd Annual Meeting of the Association for Computational Linguistics, pp. 133–138. Association for Computational Linguistics, Las Cruces, New Mexico, USA, June 1994. https://doi.org/10.3115/981732.981751
Xu, H., Liu, B., Shu, L., Yu, P.S.: BERT post-training for review reading comprehension and aspect-based sentiment analysis. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2324–2335. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1242
Yan, J., Yin, X.C., Lin, W., Deng, C., Zha, H., Yang, X.: A short survey of recent advances in graph matching. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, ICMR 2016, pp. 167–174. ACM, New York, NY, USA (2016). https://doi.org/10.1145/2911996.2912035
Acknowledgments
The work presented in this paper has been funded by the German Federal Ministry of Education and Research (BMBF) as part of the research project “HistKI”, grant identifier 01UG2120.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bruschke, J., Kröber, C., Utescher, R., Niebling, F. (2023). Towards Querying Multimodal Annotations Using Graphs. In: Münster, S., Pattee, A., Kröber, C., Niebling, F. (eds) Research and Education in Urban History in the Age of Digital Libraries. UHDL 2023. Communications in Computer and Information Science, vol 1853. Springer, Cham. https://doi.org/10.1007/978-3-031-38871-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-38871-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38870-5
Online ISBN: 978-3-031-38871-2
eBook Packages: Computer ScienceComputer Science (R0)