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Abstract. The Wiener index of a network, introduced by the chemist
Harry Wiener [30], is the sum of distances between all pairs of nodes
in the network. This index, originally used in chemical graph represen-
tations of the non-hydrogen atoms of a molecule, is considered to be a
fundamental and useful network descriptor. We study the problem of
constructing geometric networks on point sets in Euclidean space that
minimize the Wiener index: given a set P of n points in Rd, the goal is
to construct a network, spanning P and satisfying certain constraints,
that minimizes the Wiener index among the allowable class of spanning
networks.
In this work, we focus mainly on spanning networks that are trees and
we focus on problems in the plane (d = 2). We show that any spanning
tree that minimizes the Wiener index has non-crossing edges in the plane.
Then, we use this fact to devise an O(n4)-time algorithm that constructs
a spanning tree of minimum Wiener index for points in convex position.
We also prove that the problem of computing a spanning tree on P
whose Wiener index is at most W , while having total (Euclidean) weight
at most B, is NP-hard.
Computing a tree that minimizes the Wiener index has been studied in
the area of communication networks, where it is known as the optimum
communication spanning tree problem.

Keywords: Wiener Index · Optimum communication spanning tree ·
Minimum routing cost spanning tree.

1 Introduction

The Wiener index of a weighted graph G = (V,E) is the sum,
∑

u,v∈V δG(u, v),
of the shortest path lengths in the graph between every pair of vertices, where
δG(u, v) is the weight of the shortest (minimum-weight) path between u and v in
G. The Wiener index was introduced by the chemist Harry Wiener in 1947 [30].
The Wiener index and its several variations have found applications in chemistry,
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e.g., in predicting the antibacterial activity of drugs and modeling crystalline
phenomena. It has also has been used to give insight into various chemical and
physical properties of molecules [28] and to correlate the structure of molecules
with their biological activity [20]. The Wiener index has become part of the
general scientific culture, and it is still the subject of intensive research [2,10,12,
32]. In its applications in chemistry, the Wiener index is most often studied in
the context of unweighted graphs. The study of minimizing the sum of interpoint
distances also arises naturally in the network design field, where the problem of
computing a spanning tree of minimum Wiener index is known as the Optimum
Communication Spanning Tree (OCST) problem [15,18].

Given a undirected graph G = (V,E) and a (nonnegative) weight function
on the edges of G, representing the delay on each edge, the routing cost c(T ) of a
spanning tree T of G is the sum of the weights (delays) of the paths in T between
every pair of vertices: c(T ) =

∑
u,v∈V δT (u, v), where δT (u, v) is the weight of

the (unique) path between u and v in T . The OCST problem aims to find a
minimum routing cost spanning tree of a given weighted undirected graph G,
thereby seeking to minimize the expected cost of a path within the tree between
two randomly chosen vertices. The OCST was originally introduced by Hu [18]
and is known to be NP-complete in graphs, even if all edge weights are 1 [19].
Wu et al. [31] presented a polynomial time approximation scheme (PTAS) for
the OCST problem. Specifically, they showed that the best k-star (a tree with at
most k internal vertices) yields a (k+3

k+1 )-approximation for the problem, resulting
in a (1 + ε)-approximation algorithm of running time O

(
n2d

2
ε e−2

)
.

While there is an abundance of research related to the Wiener index, e.g.,
computing and bounding the Wiener indexes of specific graphs or classes of
graphs [16, 17, 24] and explicit formulas for the Wiener index for special classes
of graphs [3, 23, 26, 29, 30], to the best of our knowledge, the Wiener index has
not received much attention in geometric settings. In this work, we study the
Wiener index and the optimum communication spanning tree problem in selected
geometric settings, hoping to bring this important and highly applicable index
to the attention of computational geometry researchers.

Our Contributions and Overview. Let P be a set of n points in the plane.
we study the problem of computing a spanning tree on P that minimizes the
Wiener index when the underlying graph is the complete graph on P , with
edge weights given by their Euclidean lengths. In Section 2, we prove that the
optimal tree (that minimizes the Wiener index) has no crossing edges. As our
main algorithmic result, in Section 3, we give a polynomial-time algorithm to
solve the problem when the points P are in convex position; this result strongly
utilizes the structural result that the edges of an optimal tree do not cross, which
enables us to devise a dynamic programming algorithm to optimize. Then, in
Section 4, we prove that the “Euclidean Wiener Index Tree Problem”, in which
we seek a spanning tree on P whose Wiener index is at most W , while having
total (Euclidean) weight at most B, is (weakly) NP-hard. Finally, in Section 5,
we discuss the problem of finding a minimum Wiener index path spanning P .
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Related Work. A problem related to ours is the minimum latency problem, also
known as the traveling repairman problem TRP: Compute a path, starting at
point s, that visits all points, while minimizing the sum of the distances (the
“latencies”) along the path from s to every other point (versus between all pairs
of points, as in the Wiener index). There is a PTAS for TRP (and the k-TRP,
with k repairmen) in the Euclidean plane and in weighted planar graphs [27].

Wiener index optimization also arises in the context of computing a non-
contracting embedding of one metric space into another (e.g., a line metric or
a tree metric) in order to minimize the average distortion of the embedding
(defined to be the sum of all pairs distances in the new space, divided by the
sum of all pairs distances in the original space). It is NP-hard to minimize av-
erage distortion when embedding a tree metric into a line metric; there is a
constant-factor approximation (based on the k-TRP) for minimizing the aver-
age distortion in embedding a metric onto a line (i.e., finding a spanning path
of minimum Wiener index) [11], which, using [27], gives a (2+ ε)-approximation
in the Euclidean plane.

A related problem that has recently been examined in a geometric setting is
the computation of the Beer index of a polygon P , defined to be the probability
that two randomly (uniformly) distributed points in P being visible to each
other [1]; the same paper also studies the problem of computing the expected
distance between two random points in a polygon, which is, like the Wiener
index, based on computing the sum of distances (evaluated as an integral in the
continuum) between all pairs of points.

Another area of research that is related to the Wiener index is that of span-
ners: Given a weighted graph G and a real number t > 1, a t-spanner of G is
a spanning sub-graph G∗ of G, such that δG∗(u, v) ≤ t · δG(u, v), for every two
vertices u and v in G. Thus, the shortest path distances in G∗ approximate the
shortest path distances in the underlying graph G, and the parameter t repre-
sents the approximation ratio. The smallest t for which G∗ is a t-spanner of G is
known as the stretch factor. There is a vast literature on spanners, especially in
geometry (see, e.g., [4–7, 13, 22, 25]) In a geometric graph, G, the stretch factor
between two vertices, u and v, is the ratio between the Euclidean length of the
shortest path from u to v in G and the Euclidean distance between u and v. The
average stretch factor of G is the average stretch factor taken over all pairs of
vertices in G. For a given weighted connected graph G = (V,E) with positive
edge weights and a positive value W , the average stretch factor spanning tree
problem seeks a spanning tree T of G such that the average stretch factor (over(
n
2

)
pairs of vertices) is bounded by W . For points in the Euclidean plane, one

can construct in polynomial time a spanning tree with constant average stretch
factor [9].

2 Preliminaries

Let P be a set of n points in the plane and let G = (P,E) be the complete graph
over P . For each edge (p, q) ∈ E, let w(p, q) = |pq| denote the weight of (p, q),
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given by the Euclidean distance, |pq|, between p and q. Let T be a spanning tree
of P . For points p, q ∈ P , let δT (p, q) denote the weight of the (unique) path
between p and q in T . Let W (T ) =

∑
p,q∈P δT (p, q) denote the Wiener index

of T , given by the sum of the weights of the paths in T between every pair of
points. Finally, for a point p ∈ P , let δp(T ) =

∑
q∈P δT (p, q) denote the total

weight of the paths in T from p to every point of P .

Theorem 1. Let T ∗ be a spanning tree of P that minimizes the Wiener index.
Then, T ∗ is planar.

Proof. Assume towards a contradiction that there are two edges (a, c) and (b, d)
in T that cross each other. Let F be the forest obtained by removing the edges
(a, c) and (b, d) from T . Thus F contains three sub-trees. Assume, w.l.o.g., that
a and b are in the same sub-tree Tab, and c and d are in separated sub-trees Tc
and Td, respectively; see Figure 1. Let nab, nc, and nd be the number of points
in Tab, Tc, and Td, respectively. Thus,

W (T ∗) =W (Tab) + nc · δa(Tab) + nd · δb(Tab)
+W (Tc) + (nab + nd) · δc(Tc) + nc(nab + nd) · |ac|
+W (Td) + (nab + nc) · δd(Td) + nd(nab + nc) · |bd|
+ nc · nd · δT∗(a, b) .

a b

d c

Ta,b

Tc
Td

a b

d c

Ta,b

Tc
Td

a b

d c

Ta,b

Tc
Td

Fig. 1. The trees T ∗, T ′, and T ′′ (from left to right).

Let T ′ be the spanning tree of P obtained from T ∗ by replacing the edge
(b, d) by the edge (a, d). Similarly, let T ′′ be the spanning tree of P obtained
from T ∗ by replacing the edge (a, c) by the edge (b, c). Thus,

W (T ′) =W (Tab) + (nc + nd) · δa(Tab)
+W (Tc) + (nab + nd) · δc(Tc) + nc(nab + nd) · |ac|
+W (Td) + (nab + nc) · δd(Td) + nd(nab + nc) · |ad| ,
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and

W (T ′′) =W (Tab) + (nc + nd) · δb(Tab)
+W (Tc) + (nab + nd) · δc(Tc) + nc(nab + nd) · |bc|
+W (Td) + (nab + nc) · δd(Td) + nd(nab + nc) · |bd| .

Therefore,

W (T ∗)−W (T ′) = nd
(
δb(Tab)− δa(Tab)

)
+ nd(nab + nc)

(
|bd| − |ad|

)
+ nc · nd · δT∗(a, b) ,

and

W (T ∗)−W (T ′′) = nc
(
δa(Tab)− δb(Tab)

)
+ nc(nab + nd)

(
|ac| − |bc|

)
+ nc · nd · δT∗(a, b) .

If W (T ∗) − W (T ′) > 0 or W (T ∗) − W (T ′′) > 0, then this contradicts the
minimality of T ∗, and we are done.

Assume that W (T ∗) −W (T ′) ≤ 0 and W (T ∗) −W (T ′′) ≤ 0. Since nc > 0
and nd > 0, we have

δb(Tab)− δa(Tab) + (nab + nc)
(
|bd| − |ad|

)
+ nc · δT∗(a, b) ≤ 0 ,

and

δa(Tab)− δb(Tab) + (nab + nd)
(
|ac| − |bc|

)
+ nd · δT∗(a, b) ≤ 0 .

Thus, by summing these inequalities, we have

(nab + nc)
(
|bd| − |ad|

)
+ (nab + nd)

(
|ac| − |bc|

)
+ (nc + nd) · δT∗(a, b) ≤ 0 .

That is,

nab
(
|bd|+ |ac| − |ad| − |bc|

)
+ nc

(
|bd|+ δT∗(a, b)− |ad|

)
+ nd

(
|ac|+ δT∗(a, b)− |bc|

)
≤ 0 .

Since nab, nc, nd > 0, and, by the triangle inequality, |bd|+ |ac| − |ad| − |bc| > 0,
|bd|+ δT∗(a, b)− |ad| > 0, and |ac|+ δT∗(a, b)− |bc| > 0, this is a contradiction.

ut

3 An Exact Algorithm for Points in Convex Position

Let {p1, p2, . . . , pn} denote the vertices of the convex polygon that is obtained
by connecting the points in P , ordered in clockwise-order with an arbitrary
first point p1; see Figure 2. For simplicity of presentation, we assume that all
indices are taken modulo n. For each 1 ≤ i ≤ j ≤ n, let P [i, j] ⊆ P be the set
{pi, pi+1, . . . , pj}. Let Ti,j be a spanning tree of P [i, j], and let W (Ti,j) denote
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p1
p2

pnpn−1

pi

pj

pj+1
pi−1

pi+1

T1,iTj,n

Ti+1,j

pj−1

Fig. 2. The convex polygon that is obtained from P . p1 is connected to pj in T ∗.

its Wiener index. For a point x ∈ {i, j}, let δx(Ti,j) be the total weight of
the shortest paths from px to every point of P [i, j] in Ti,j . That is δx(Ti,j) =∑

p∈P [i,j] δTi,j (px, p).
Let T ∗ be a minimum Wiener index tree of P and let W ∗ be its Wiener

index. Notice that, for any 1 ≤ i < j ≤ n, the points in P [i, j] are in convex
position, since the points in P are in convex position. Since T ∗ is a spanning
tree, each point, particularly p1, is adjacent to at least one edge in T ∗. Let pj be
the point with maximum index j that is connected to p1 in T ∗. Moreover, there
exists an index 1 ≤ i ≤ j such that all the points in P [1, i] are closer to p1 than
to pj in T ∗, and all the points in P [i + 1, j] are closer to pj than to p1 in T ∗.
Hence,

W ∗ =W (T1,i) + (n− i) · δ1(T1,i) (1)
+W (Ti+1,j) + (n− j + i) · δj(Ti+1,j) (2)
+W (Tj,n) + (j − 1) · δj(Tj,n) (3)
+ i(n− i) · |p1pj |. (4)

Thus, in order to compute W ∗, we compute (1), (2), (3), and (4) for each
i between 2 and n and for each j between 1 and i, and take the minimum
over the sum of these values. In general, for every 1 ≤ i < j ≤ n, let Wj [i, j] =
W (Ti,j)+(n−j+i−1)·δj(Ti,j) be the minimum value obtained by a spanning tree
Ti,j of P [i, j] rooted at pj . Similarly, letWi[i, j] =W (Ti,j)+(n−j+i−1)·δi(Ti,j)
be the minimum value obtained by a spanning tree Ti,j of P [i, j] rooted at
pi. Thus, we can compute Wj [i, j] and Wi[i, j] recursively using the following
formulas; see also Figure 3.

Wj [i, j] = min
i≤k<j

k≤l<j

{
Wk[i, k]+Wk[k, l]+Wj [l+1, j]+(l−i+1)(n−l+i−1)·|pkpj |

}
,
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and

Wi[i, j] = min
i<k≤j
i≤l<k

{
Wi[i, l] +Wk[l + 1, k] +Wj [k, j] + (j − l)(n− j + l) · |pipk|

}
.

pi

pj
pk

pl

pl+1

pi

pj

pk

pl

pl+1

(a) (b)

Ti,k

Tk,l

Tl+1,j

Tk,j

Tl+1,k

Ti,l

Fig. 3. A sub-problem defined by P [i, j]. (a) Computing Wj [i, j]. (b) Computing
Wi[i, j].

We compute Wj [i, j] and Wi[i, j], for each 1 ≤ i < j ≤ n, using dynamic
programming as follows. We maintain two tables

→
M and

←
M each of size n × n,

such that
→
M [i, j] = Wj [i, j] and

←
M [i, j] = Wi[i, j], for each 1 ≤ i < j ≤ n. We

fill in the tables using Algorithm 1.

Algorithm 1 ComputeOptimal(P )
1: n← |P |
2: for each i← 1 to n do→

M [i, i]← 0
←
M [i, i]← 0

3: for each j ← n to 1 do
for each i← j to n do
→
M [i, j]← min

i≤k<j

k≤l<j

{ →
M [i, k]+

←
M [k, l]+

→
M [l+1, j]+(l−i+1)(n−l+i−1)·|pkpj |

}
←
M [i, j]← min

i<k≤j

i≤l<k

{ ←
M [i, l]+

→
M [l+1, k]+

→
M [k, j] + (j − l)(n− j + l) · |pipk|

}
4: return

←
M [1, n]

Notice that when we fill the cell
→
M [i, j], all the cells

→
M [i, k],

←
M [k, l], and

→
M [l + 1, j], for each i ≤ k < j and for each k ≤ l < j, are already computed,
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and when we fill the cell
←
M [i, j], all the cells

←
M [i, l],

→
M [l+ 1, k], and

→
M [k, j],

for each i < k ≤ j and for each i ≤ l < k, are already computed. Therefore, each
cell in the table is computed in O(n2) time, and the whole table is computed in
O(n4) time.

The following theorem summarizes the result of this section.

Theorem 2. Let P be a set of n points in convex position. Then, a spanning
tree of P of minimum Wiener index can be computed in O(n4) time.

4 Hardness Proof

Let P be a set of points in the plane and let T be a spanning tree of P . We
define the Wiener index of T as W (T ) =

∑
p,q∈P δT (p, q) and the weight of T as

wt(T ) =
∑

(p,q)∈T |pq|, where δT (p, q) is the length of the path between p and q
in T and |pq| is the Euclidean distance between p and q. For a edge (p, q), let
NT (p) (resp., NT (q)) be the number of points in T that are closer to q than q
(resp., to q than p). It is well known [21] that W (T ) can be formulated as:

W (T ) =
∑

(p,q)∈T

NT (p) ·NT (q) · |pq|.

In this section, we prove that the following problem is NP-hard.

Euclidean Wiener Index Tree Problem: Given a set P of points in the
plane, a cost W , and a budget B, decide whether there exists a spanning tree T
of P , such that W (T ) ≤W and wt(T ) ≤ B.

Theorem 3. The Euclidean Wiener Index Tree Problem is weakly NP-hard.

Proof. Inspired by Carmi and Chaitman-Yerushalmi [8], we reduce the Partition
problem, which is known to be NP-hard [14], to the Euclidean Wiener Index Tree
Problem. In the Partition problem, we are given a set X = {x1, x2, . . . , xn} of n
positive integers with even R =

∑n
i=1 xi, and the goal is to decide whether there

is a subset S ⊆ X, such that
∑

xi∈S xi =
1
2R.

Given an instance X = {x1, x2, . . . , xn} of the Partition problem, where xi’s
are integers, we construct a set P of m = n3 + 3n points as follows. The set P
consists of n points p1, p2, . . . , pn located equally spaced on a circle of radius nR,
a cluster C of n3 points located on the center of the circle. Moreover, for each
1 ≤ i ≤ n, we locate two points li and ri both of distance xi from pi and the
distance between them is 1

2xi; see Figure 4. Finally, we set

B =
(
n2 +

7

4

)
R, and

W = 3n2
(
m− 3

)
R+

(9
4
m− 13

4

)
R

= 3n5R+
45

4
n3R− 9n2R+

27

4
nR− 13

4
R .
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C

pi

li ri
xixi

xi
2

nR

nR

nR

rj

lj

pj

xj

xj

xj
2

Fig. 4. The set P produced by the reduction. Connecting the points lj , rj , and pj for
xj ∈ S (blue) and connecting the points li, ri, and pi for xi ∈ X \ S (red).

Assume that there exists a set S ⊆ X, such that
∑

xi∈S xi =
1
2R. We con-

struct a spanning tree T for the points in P as follows:

– Select an arbitrary point s ∈ C and connect it to all the points in C ∪
{p1, p2, . . . , pn} as a star centered at s.b

– For each 1 ≤ i ≤ n, connect the points pi and li.
– For each xi ∈ S, connect the points pi and ri.
– For each xi ∈ X \ S, connect the points ri and li; see Figure 4.

It is easy to see that wt(T ) = n2R + R + 3
4R =

(
n2 + 7

4

)
R = B. Moreover, the

Wiener index of T is:

W (T ) =
∑

(p,q)∈T

NT (p) ·NT (q) · |pq|

= 3(n3 + 3n− 3)n2R+
∑
xi∈S′

2(n3 + 3n− 1)xi

+
∑
xi /∈S′

(
(n3 + 3n− 1)

1

2
xi

)
+
∑
xi /∈S′

(
2(n3 + 3n− 2)xi

)
= 3n5R+ 9n3R− 9n2R+ (n3 + 3n− 1)R

+
1

4
(n3 + 3n− 1)R+ (n3 + 3n− 2)R

= 3n5R+
45

4
n3R− 9n2R+

27

4
nR− 13

4
R =W .

Conversely, let T ′ be a spanning tree of P with wt(T ′) ≤ B andW (T ′) ≤W .
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Claim. The number of edges (p, q) ∈ T ′, such that p ∈ C and q ∈ P \ C is n.

Proof. Assume there are k such edges. The weight of each such edge is at least
nR thus the wt(T ′) ≥ knR, since B = (n2 + 7

4 )R we get that k ≤ n. We have

W (T ′) > (3knR+ 3(n− k)(nR+ 2πR))n3

= (3kn+ 3n2 + 6nπ − 3kn− 6kπ)n3R

= (3n2 + 6π(n− k))n3R
= 3n5R+ 6π(n− k)n3R .

Thus, if k < n, then we get that W (T ′) > 3n5R + 6πn3R > W , for sufficiently
large n. ut

Let Gi = {pi, li, ri}, for every 1 ≤ i ≤ n. From the proof of Claim 4, if
follows that for every 1 ≤ i ≤ n, there is an exactly one edge (p, q) in T ′, where
q ∈ Gi and p ∈ C. Moreover, it is easy to see that q = pi. Thus, in every Gi, we
have (pi, li) ∈ T ′ or (pi, ri) ∈ T ′. Assume w.l.o.g., that (pi, li) ∈ T ′. Therefore,
either (pi, ri) ∈ T ′ or (li, ri) ∈ T ′. Let S′ ⊆ X, such that xi ∈ S′ if and only if
(pi, ri) ∈ T ′, and let R′ =

∑
xi∈S′ xi.

Thus, to finish the proof we show that if R′ 6= 1
2R, then either wt(T ′) > B

or W (T ) > W .
Case 1: R′ > 1

2R. In this case, we have

wt(T ′) ≥ n2R+
∑
xi∈S′

2xi +
∑
xi /∈S′

3

2
xi = n2R+ 2R′ +

3

2
(R−R′)

= n2R+
1

2
R′ +

3

2
R > n2R+

1

4
R+

3

2
R =

(
n2 +

7

4

)
R = B .

Therefore, wt(T ′) > B.
Case 2: R′ < 1

2R. In this case, we have

W (T ) =
∑

(p,q)∈T

NT (p) ·NT (q) · |pq|

= 3(n3 + 3n− 3)n2R+
∑
xi∈S′

2(n3 + 3n− 1)xi

+
∑
xi /∈S′

(
(n3 + 3n− 1)

1

2
xi

)
+
∑
xi /∈S′

(
2(n3 + 3n− 2)xi

)
= 3n5R+ 9n3R− 9n2R+ 2(n3 + 3n− 1)R′

+
1

2

(
n3 + 3n− 1

)
(R−R′) + 2(n3 + 3n− 2)(R−R′)
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= 3n5R+ 9n3R− 9n2R+ 2(n3 + 3n− 2)R

−
(1
2

(
n3 + 3n− 1

)
− 2
)
R′ +

1

2

(
n3 + 3n− 1

)
R

−
(1
2

(
n3 + 3n− 1

)
− 2
)
R′ +

1

2

(
n3 + 3n− 1

)
R

> 3n5R+ 9n3R− 9n2R+ 2(n3 + 3n− 2)R

− 1

2

(1
2

(
n3 + 3n− 1

)
− 2
)
R+

1

2

(
n3 + 3n− 1

)
R

= 3n5R+
45

4
n3R− 9n2R+

27

4
nR− 13

4
R =W .

5 Paths that Optimize Wiener Index

We consider now the case of spanning paths that optimize the Wiener index.

Theorem 4. Let P be a set of n points. The path that minimizes the Wiener
index among all Hamiltonian paths of P is not necessarily planar.

Proof. Consider the set P of n = 2m+ 2 points in convex position as shown in
Figure 5. The set P consists of two clusters Pl and Pr and two points p and q,
where |Pl| = |Pr| = m. The points in cluster Pl are arbitrarily close to the origin
(0, 0), and the points in cluster Pr are arbitrarily close to coordinate (6, 0). The
point p is located on coordinate (5, 1) and the point q is located on coordinate
(5,−1).

p

q

Pl Pr

(0, 0) (0, 0)

(5, 1)

(5,−1)

Fig. 5. A set P of n = 2m+ 2 points in a convex position.

For simplicity of computation, we assume that a path connecting the points
in Pl has a Wiener index zero, and also a path connecting the points in Pr has
a Wiener index zero. Thus, any path Π of P that aims to minimize the Wiener
index will connect the points in Pl by a path and the points in Pr by a path.
We computed the Wiener index of all possible Hamiltonian paths defined on
points (0, 0), (6, 0), p, and q; see Figure 6. This computation shows that the
Hamiltonian path of the minimum Wiener index is not planar (for sufficiently
large n). ut

Theorem 5. For points in the Euclidean plane, it is NP-hard to compute a
Hamiltonian path minimizing Wiener index.
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6m2 + 4m(4 +
√

26) + 2

(
√

26 +
√

2)m2 + Θ(m)

6m2 + 4m(4 +
√

2) + 2

(2 +
√

26 +
√

2)m2 + Θ(m)

6m2 + 2m(6 +
√

26 +
√

2) + Θ(1)

Fig. 6. The Wiener index of the 12 possible Hamiltonian paths that are defined on
points (0, 0), (6, 0), p, and q (assuming that the m points on (0, 0) are connected by a
path, and the m points on (6, 0) are connected by a path, both of Wiener index zero).

Proof. We reduce from Hamiltonicity in a grid graph (whose vertices are integer
grid points and whose edges join pairs of grid points at distance one). First,
observe that the Wiener index of a Hamiltonian path of n points, where each
edge is of length one, is

∑n−1
i=1 i(n − i) =

(
n+1
3

)
; see Figure 7. Thus, it is easy

to see that a grid graph G has a Hamiltonian path if and only if there exists a
path of Wiener index

(
n+1
3

)
. ut

Theorem 6. There exists a set P of n points in the plane, such that the Wiener
index of any Hamiltonian path is at least Θ(

√
n) times the Wiener index of the

complete Euclidean graph over P

Proof. Let P be a set of n points located on a
√
n×
√
n integer grid. The Wiener

index of any Hamiltonian path of P is at least
(
n+1
3

)
, which is the Wiener index

of a Hamiltonian path whose all its edges are of length one. Thus, the Wiener
index of any Hamiltonian path of P is at least Θ(n3). On the other hand, the
Wiener index of the complete graph over P is Θ(n2.5). ut

Fig. 7. A grid graph G and a Hamiltonian path with Wiener index
(
n+1
3

)
in G.
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