Skip to main content

Sublinear-Space Streaming Algorithms for Estimating Graph Parameters on Sparse Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Abstract

In this paper, we design sub-linear space streaming algorithms for estimating three fundamental parameters – maximum independent set, minimum dominating set and maximum matching – on sparse graph classes, i.e., graphs which satisfy \(m=O(n)\) where mn is the number of edges, vertices respectively. Each graph parameter we consider can have size \(\varOmega (n)\) even on sparse graph classes, and hence for sublinear-space algorithms we are restricted to parameter estimation instead of attempting to find a solution. We obtain these results:

  • Estimating Max Independent Set via the Caro-Wei bound: Caro and Wei each showed \(\lambda = \sum _{v} {1}/(d(v) + 1)\) is a lower bound on max independent set size, where vertex v has degree d(v). If average degree, \(\bar{d}\), is \(\mathcal {O}(1)\), and max degree \(\varDelta = \mathcal {O}({\varepsilon }^{2} \bar{d}^{-3} n)\), our algorithms, with at least \(1 - \delta \) success probability:

    • In online streaming, return an actual independent set of size \(1 \pm {\varepsilon }\) times \(\lambda \). This improves on Halldórsson et al. [Algorithmica ’16]: we have less working space, i.e., \(\mathcal {O}(\log {\varepsilon }^{-1} \cdot \log n \cdot \log \delta ^{-1})\), faster updates, i.e., \(\mathcal {O}(\log {\varepsilon }^{-1})\), and bounded success probability.

    • In insertion-only streams, approximate \(\lambda \) within factor \(1 \pm {\varepsilon }\), in one pass, in \(\mathcal {O}(\bar{d} {\varepsilon }^{-2} \log n \cdot \log \delta ^{-1})\) space. This aligns with the result of Cormode et al. [ISCO ’18], though our method also works for online streaming. In a vertex-arrival and random-order stream, space reduces to \(\mathcal {O}(\log (\bar{d} {\varepsilon }^{-1}))\). With extra space and post-processing step, we remove the max-degree constraint.

  • Sublinear-Space Algorithms on Forests: On a forest, Esfandiari et al. [SODA ’15, TALG ’18] showed space lower bounds for 1-pass randomized algorithms that approximately estimate these graph parameters. We narrow the gap between upper and lower bounds:

    • Max independent set size within \(3/2 \cdot (1 \pm {\varepsilon })\) in one pass and in \(\log ^{\mathcal {O}(1)} n\) space, and within \(4/3\cdot (1 \pm {\varepsilon })\) in two passes and in \(\tilde{\mathcal {O}}(\sqrt{n})\) space; the lower bound is for approx. \(\le 4/3\).

    • Min dominating set size within \(3 \cdot (1 \pm {\varepsilon })\) in one pass and in \(\log ^{\mathcal {O}(1)} n\) space, and within \(2\cdot (1 \pm {\varepsilon })\) in two passes and in \(\tilde{\mathcal {O}}(\sqrt{n})\) space; the lower bound is for approx. \(\le 3/2\).

    • Max matching size within \(2 \cdot (1 \pm {\varepsilon })\) in one pass and in \(\log ^{\mathcal {O}(1)} n\) space, and within \(3/2\cdot (1 \pm {\varepsilon })\) in two passes and in \(\tilde{\mathcal {O}}(\sqrt{n})\) space; the lower bound is for approx. \(\le 3/2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Full version is at https://doi.org/10.48550/arXiv.2305.16815.

  2. 2.

    This includes planar graphs, bounded treewidth, bounded genus, H-minor-free, etc.

  3. 3.

    The relative error between the estimate and the actual value.

  4. 4.

    \(\varOmega (\sqrt{n})\) (or \(\varOmega (n)\)) space is required for randomized (or deterministic) algorithms.

  5. 5.

    \(\tilde{\mathcal {O}}\)-notation suppresses the poly-logarithmic factor in the bound.

  6. 6.

    Due to space constraints, each result labeled \([\star ]\) has its proof in the full version (See footnote 1).

  7. 7.

    Unless otherwise stated, we assume that the input forest has no isolated vertices.

  8. 8.

    The variable c of Table 1 is now out of scope.

References

  1. Araujo, F., Farinha, J., Domingues, P., Silaghi, G.C., Kondo, D.: A maximum independent set approach for collusion detection in voting pools. J. Parallel Distrib. Comput. 71(10), 1356–1366 (2011)

    Article  Google Scholar 

  2. Bauckmann, J., Abedjan, Z., Leser, U., Müller, H., Naumann, F.: Discovering conditional inclusion dependencies. In: CIKM 2012, pp. 2094–2098 (2012)

    Google Scholar 

  3. Boppana, R.B., Halldórsson, M.M., Rawitz, D.: Simple and local independent set approximation. In: SIROCCO 2018, pp. 88–101 (2018)

    Google Scholar 

  4. Bury, M., et al.: Structural results on matching estimation with applications to streaming. Algorithmica 81(1), 367–392 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bury, M., Schwiegelshohn, C.: Sublinear estimation of weighted matchings in dynamic data streams. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 263–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_23

    Chapter  Google Scholar 

  6. Caro, Y.: New results on the independence number. Technical report, Tel-Aviv University (1979)

    Google Scholar 

  7. Cormode, G., Dark, J., Konrad, C.: Approximating the Caro-Wei bound for independent sets in graph streams. In: Lee, J., Rinaldi, G., Mahjoub, A.R. (eds.) ISCO 2018. LNCS, vol. 10856, pp. 101–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96151-4_9

    Chapter  Google Scholar 

  8. Cormode, G., Firmani, D.: A unifying framework for \(\ell _0\)-sampling algorithms. Distrib. Parallel Databases 32(3), 315–335 (2014)

    Article  Google Scholar 

  9. Cormode, G., Jowhari, H., Monemizadeh, M., Muthukrishnan, S.: The sparse awakens: streaming algorithms for matching size estimation in sparse graphs. In: ESA 2017, pp. 29:1–29:15 (2017)

    Google Scholar 

  10. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sarma, A.D., et al.: Finding related tables. In: SIGMOD 2012, pp. 817–828 (2012)

    Google Scholar 

  12. DeLaVina, E., Larson, C.E., Pepper, R., Waller, B., Favaron, O.: On total domination and support vertices of a tree. AKCE Int. J. Graphs Comb. 7(1), 85–95 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Deng, D., et al.: The data civilizer system. In: CIDR (2017)

    Google Scholar 

  14. Eidenbenz, S.J.: Online dominating set and variations on restricted graph classes. Technical report/ETH Zurich, Department of Computer Science 380 (2002)

    Google Scholar 

  15. Esfandiari, H., Hajiaghayi, M.T., Liaghat, V., Monemizadeh, M., Onak, K.: Streaming algorithms for estimating the matching size in planar graphs and beyond. In: SODA 2015, pp. 1217–1233 (2015)

    Google Scholar 

  16. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comp. Sci. 348(2–3), 207–216 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganti, V., Sarma, A.D.: Data cleaning: a practical perspective. Synth. Lect. Data Manage. 5(3), 1–85 (2013)

    Article  Google Scholar 

  18. Gemsa, A., Nöllenburg, M., Rutter, I.: Evaluation of labeling strategies for rotating maps. J. Exp. Algorithmics (JEA) 21, 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Halldórsson, B.V., Halldórsson, M.M., Losievskaja, E., Szegedy, M.: Streaming algorithms for independent sets in sparse hypergraphs. Algorithmica 76(2), 490–501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hossain, A.: Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotech. 38(12), 1466–1475 (2020)

    Article  Google Scholar 

  22. Indyk, P.: A small approximately min-wise independent family of hash functions. J. Algorithms 38(1), 84–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jayaram, R., Woodruff, D.P.: Data streams with bounded deletions. In: PODS 2018, pp. 341–354 (2018)

    Google Scholar 

  24. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kane, D.M., Nelson, J., Woodruff, D.P.: On the exact space complexity of sketching and streaming small norms. In: SODA 2010, pp. 1161–1178 (2010)

    Google Scholar 

  26. Kane, D.M., Nelson, J., Woodruff, D.P.: An optimal algorithm for the distinct elements problem. In: PODS 2010, pp. 41–52 (2010)

    Google Scholar 

  27. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Chapter  Google Scholar 

  28. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. In: SEA 2010, pp. 83–93 (2010)

    Google Scholar 

  29. Lemańska, M.: Lower bound on the domination number of a tree. Discussiones Math. Graph Theory 24(2), 165–169 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math. 13(4), 383–390 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. Meierling, D., Volkmann, L.: A lower bound for the distance \(k\)-domination number of trees. Results Math. 47(3–4), 335–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Milenković, T., Memišević, V., Bonato, A., Pržulj, N.: Dominating biological networks. PLOS One 6(8), 0023016 (2011)

    Article  Google Scholar 

  33. Nacher, J.C., Akutsu, T.: Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control. New J. Phys. 14(7), 073005 (2012)

    Article  Google Scholar 

  34. Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SICOMP 26(2), 350–368 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pino, T., Choudhury, S., Al-Turjman, F.: Dominating set algorithms for wireless sensor networks survivability. IEEE Access 6, 17527–17532 (2018)

    Article  Google Scholar 

  36. Shen, C., Li, T.: Multi-document summarization via the minimum dominating set. In: COLING 2010, pp. 984–992 (2010)

    Google Scholar 

  37. Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok, 436–452 (1941)

    Google Scholar 

  38. Wang, J., Li, G., Fe, J.: Fast-join: an efficient method for fuzzy token matching based string similarity join. In: ICDE 2011, pp. 458–469 (2011)

    Google Scholar 

  39. Wei, V.: A lower bound on the stability number of a simple graph. Technical report, Bell Laboratories Technical Memorandum (1981)

    Google Scholar 

  40. Yu, J., Wang, N., Wang, G., Yu, D.: Connected dominating sets in wireless ad hoc and sensor networks-a comprehensive survey. Comput. Commun 36, 121–134 (2013)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Robert Krauthgamer for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Wirth .

Editor information

Editors and Affiliations

Ethics declarations

Author note

Xiuge Chen is now with Optiver, Sydney. Patrick Eades is now with The University of Sydney.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Chitnis, R., Eades, P., Wirth, A. (2023). Sublinear-Space Streaming Algorithms for Estimating Graph Parameters on Sparse Graphs. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics