Abstract
In the planar one-round discrete Voronoi game, two players \(\mathcal {P}\) and \(\mathcal {Q}\) compete over a set V of n voters represented by points in \(\mathbb {R}^2\). First, \(\mathcal {P}\) places a set P of k points, then \(\mathcal {Q}\) places a set Q of \(\ell \) points, and then each voter \(v\in V\) is won by the player who has placed a point closest to v. It is well known that if \(k=\ell =1\), then \(\mathcal {P}\) can always win n/3 voters and that this is worst-case optimal. We study the setting where \(k>1\) and \(\ell =1\). We present lower bounds on the number of voters that \(\mathcal {P}\) can always win, which improve the existing bounds for all \(k\geqslant 4\). As a by-product, we obtain improved bounds on small \(\varepsilon \)-nets for convex ranges for even numbers of points in general position.
MdB is supported by the Dutch Research Council (NWO) through Gravitation grant NETWORKS-024.002.003.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Our definition of \(\varepsilon \)-net is slightly weaker than usual, since a range missing the \(\varepsilon \)-net may contain up to \(\left\lceil \varepsilon n \right\rceil \) points, instead of \(\lfloor \varepsilon n\rfloor \) points.
References
Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M., van Oostrum, R.: Competitive facility location along a highway. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 237–246. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44679-6_26
Aronov, B., et al.: Small weak epsilon-nets. Comput. Geom. 42(5), 455–462 (2009). https://doi.org/10.1016/j.comgeo.2008.02.005
Bandyapadhyay, S., Banik, A., Das, S., Sarkar, H.: Voronoi game on graphs. Theor. Comput. Sci. 562, 270–282 (2015). https://doi.org/10.1016/j.tcs.2014.10.003
Banik, A., Bhattacharya, B.B., Das, S.: Optimal strategies for the one-round discrete Voronoi game on a line. J. Comb. Optim. 26(4), 655–669 (2012). https://doi.org/10.1007/s10878-011-9447-6
Banik, A., Carufel, J.D., Maheshwari, A., Smid, M.H.M.: Discrete Voronoi games and \(\epsilon \)-nets, in two and three dimensions. Comput. Geom. 55, 41–58 (2016). https://doi.org/10.1016/j.comgeo.2016.02.002
de Berg, M., Gudmundsson, J., Mehr, M.: Faster algorithms for computing plurality points. ACM Trans. Algorithms 14(3), 36:1–36:23 (2018). https://doi.org/10.1145/3186990
de Berg, M., Kisfaludi-Bak, S., Mehr, M.: On one-round discrete Voronoi games. In: Proceedings of the 30th International Symposium on Algorithms and Computation (ISAAC 2019). LIPIcs, vol. 149, pp. 37:1–37:17 (2019). https://doi.org/10.4230/LIPIcs.ISAAC.2019.37
Bukh, B.: A point in many triangles. Electron. J. Comb. 13(1) (2006). http://www.combinatorics.org/Volume_13/Abstracts/v13i1n10.html
Byrne, T., Fekete, S.P., Kalcsics, J., Kleist, L.: Competitive location problems: balanced facility location and the one-round Manhattan Voronoi game. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 103–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_9
Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Munro, J.I. (ed.) Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 430–436 (2004). http://dl.acm.org/citation.cfm?id=982792.982853
Chawla, S., Rajan, U., Ravi, R., Sinha, A.: Min-max payoffs in a two-player location game. Oper. Res. Lett. 34(5), 499–507 (2006). https://doi.org/10.1016/j.orl.2005.10.002
Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game. Discret. Comput. Geom. 31(1), 125–138 (2003). https://doi.org/10.1007/s00454-003-2951-4
Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_4
McKelvey, R.D., Wendell, R.E.: Voting equilibria in multidimensional choice spaces. Math. Oper. Res. 1(2), 144–158 (1976)
Mustafa, N.H., Ray, S.: An optimal extension of the centerpoint theorem. Comput. Geom. 42, 505–510 (2009). https://doi.org/10.1016/j.comgeo.2007.10.004
Teramoto, S., Demaine, E.D., Uehara, R.: Voronoi game on graphs and its complexity. In: 2006 IEEE Symposium on Computational Intelligence and Games, pp. 265–271 (2006). https://doi.org/10.1109/CIG.2006.311711
Wu, Y.-W., Lin, W.-Y., Wang, H.-L., Chao, K.-M.: Computing plurality points and Condorcet points in Euclidean space. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 688–698. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45030-3_64
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
de Berg, M., van Wordragen, G. (2023). Improved Bounds for Discrete Voronoi Games. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-38906-1_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38905-4
Online ISBN: 978-3-031-38906-1
eBook Packages: Computer ScienceComputer Science (R0)