Skip to main content

Improved Bounds for Discrete Voronoi Games

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 1061 Accesses

Abstract

In the planar one-round discrete Voronoi game, two players \(\mathcal {P}\) and \(\mathcal {Q}\) compete over a set V of n voters represented by points in \(\mathbb {R}^2\). First, \(\mathcal {P}\) places a set P of k points, then \(\mathcal {Q}\) places a set Q of \(\ell \) points, and then each voter \(v\in V\) is won by the player who has placed a point closest to v. It is well known that if \(k=\ell =1\), then \(\mathcal {P}\) can always win n/3 voters and that this is worst-case optimal. We study the setting where \(k>1\) and \(\ell =1\). We present lower bounds on the number of voters that \(\mathcal {P}\) can always win, which improve the existing bounds for all \(k\geqslant 4\). As a by-product, we obtain improved bounds on small \(\varepsilon \)-nets for convex ranges for even numbers of points in general position.

MdB is supported by the Dutch Research Council (NWO) through Gravitation grant NETWORKS-024.002.003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our definition of \(\varepsilon \)-net is slightly weaker than usual, since a range missing the \(\varepsilon \)-net may contain up to \(\left\lceil \varepsilon n \right\rceil \) points, instead of \(\lfloor \varepsilon n\rfloor \) points.

References

  1. Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M., van Oostrum, R.: Competitive facility location along a highway. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 237–246. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44679-6_26

    Chapter  Google Scholar 

  2. Aronov, B., et al.: Small weak epsilon-nets. Comput. Geom. 42(5), 455–462 (2009). https://doi.org/10.1016/j.comgeo.2008.02.005

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandyapadhyay, S., Banik, A., Das, S., Sarkar, H.: Voronoi game on graphs. Theor. Comput. Sci. 562, 270–282 (2015). https://doi.org/10.1016/j.tcs.2014.10.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Banik, A., Bhattacharya, B.B., Das, S.: Optimal strategies for the one-round discrete Voronoi game on a line. J. Comb. Optim. 26(4), 655–669 (2012). https://doi.org/10.1007/s10878-011-9447-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Banik, A., Carufel, J.D., Maheshwari, A., Smid, M.H.M.: Discrete Voronoi games and \(\epsilon \)-nets, in two and three dimensions. Comput. Geom. 55, 41–58 (2016). https://doi.org/10.1016/j.comgeo.2016.02.002

    Article  MathSciNet  MATH  Google Scholar 

  6. de Berg, M., Gudmundsson, J., Mehr, M.: Faster algorithms for computing plurality points. ACM Trans. Algorithms 14(3), 36:1–36:23 (2018). https://doi.org/10.1145/3186990

  7. de Berg, M., Kisfaludi-Bak, S., Mehr, M.: On one-round discrete Voronoi games. In: Proceedings of the 30th International Symposium on Algorithms and Computation (ISAAC 2019). LIPIcs, vol. 149, pp. 37:1–37:17 (2019). https://doi.org/10.4230/LIPIcs.ISAAC.2019.37

  8. Bukh, B.: A point in many triangles. Electron. J. Comb. 13(1) (2006). http://www.combinatorics.org/Volume_13/Abstracts/v13i1n10.html

  9. Byrne, T., Fekete, S.P., Kalcsics, J., Kleist, L.: Competitive location problems: balanced facility location and the one-round Manhattan Voronoi game. In: Uehara, R., Hong, S.-H., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 103–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_9

    Chapter  MATH  Google Scholar 

  10. Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Munro, J.I. (ed.) Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 430–436 (2004). http://dl.acm.org/citation.cfm?id=982792.982853

  11. Chawla, S., Rajan, U., Ravi, R., Sinha, A.: Min-max payoffs in a two-player location game. Oper. Res. Lett. 34(5), 499–507 (2006). https://doi.org/10.1016/j.orl.2005.10.002

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheong, O., Har-Peled, S., Linial, N., Matousek, J.: The one-round Voronoi game. Discret. Comput. Geom. 31(1), 125–138 (2003). https://doi.org/10.1007/s00454-003-2951-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Dürr, C., Thang, N.K.: Nash equilibria in Voronoi games on graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 17–28. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-3_4

    Chapter  Google Scholar 

  14. McKelvey, R.D., Wendell, R.E.: Voting equilibria in multidimensional choice spaces. Math. Oper. Res. 1(2), 144–158 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mustafa, N.H., Ray, S.: An optimal extension of the centerpoint theorem. Comput. Geom. 42, 505–510 (2009). https://doi.org/10.1016/j.comgeo.2007.10.004

    Article  MathSciNet  MATH  Google Scholar 

  16. Teramoto, S., Demaine, E.D., Uehara, R.: Voronoi game on graphs and its complexity. In: 2006 IEEE Symposium on Computational Intelligence and Games, pp. 265–271 (2006). https://doi.org/10.1109/CIG.2006.311711

  17. Wu, Y.-W., Lin, W.-Y., Wang, H.-L., Chao, K.-M.: Computing plurality points and Condorcet points in Euclidean space. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 688–698. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45030-3_64

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark de Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Berg, M., van Wordragen, G. (2023). Improved Bounds for Discrete Voronoi Games. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics