Abstract
It is well known that ordinary persistence on graphs can be computed more efficiently than the general persistence. Recently, it has been shown that zigzag persistence on graphs also exhibits similar behavior. Motivated by these results, we revisit graph persistence and propose efficient algorithms especially for local updates on filtrations, similar to what is done in ordinary persistence for computing the vineyard. We show that, for a filtration of length m, (i) switches (transpositions) in ordinary graph persistence can be done in \(O(\log m)\) time; (ii) zigzag persistence on graphs can be computed in \(O(m\log m)\) time, which improves a recent \(O(m\log ^4n)\) time algorithm assuming n, the size of the union of all graphs in the filtration, satisfies \(n\in \varOmega ({m^\varepsilon })\) for any fixed \(0<\varepsilon <1\); (iii) open-closed, closed-open, and closed-closed bars in dimension 0 for graph zigzag persistence can be updated in \(O(\log m)\) time, whereas the open-open bars in dimension 0 and closed-closed bars in dimension 1 can be done in \(O(\sqrt{m}\,\log m)\) time.
This work is partially supported by NSF grant CCF 2049010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Berkouk, N., Nyckees, L.: One diamond to rule them all: old and new topics about zigzag, levelsets and extended persistence (2022). https://arxiv.org/abs/2210.00916, https://doi.org/10.48550/ARXIV.2210.00916
Carlsson, G., De Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–405 (2010)
Carlsson, G., De Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In: Proceedings of the Twenty-Fifth Annual Symposium on Computational Geometry, pp. 247–256 (2009)
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009)
Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 119–126 (2006)
Dey, T.K., Hou, T.: Computing zigzag persistence on graphs in near-linear time. In: 37th International Symposium on Computational Geometry (2021)
Dey, T.K., Hou, T.: Updating barcodes and representatives for zigzag persistence. arXiv preprint arXiv:2112.02352 (2021)
Dey, T.K., Hou, T.: Fast computation of zigzag persistence. In: 30th Annual European Symposium on Algorithms, ESA 2022, 5–9 September 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pp. 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Dey, T.K., Wang, Y.: Computational Topology for Data Analysis. Cambridge University Press, Cambridge (2022)
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Soc, Providence (2010)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE (2000)
Farina, G., Laura, L.: Dynamic subtrees queries revisited: the depth first tour tree. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 148–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29516-9_13
Gabriel, P.: Unzerlegbare Darstellungen I. Manuscripta Math. 6(1), 71–103 (1972)
Georgiadis, L., Kaplan, H., Shafrir, N., Tarjan, R.E., Werneck, R.F.: Data structures for mergeable trees. ACM Trans. Algorithms (TALG) 7(2), 1–30 (2011)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM (JACM) 48(4), 723–760 (2001)
Maria, C., Oudot, S.Y.: Zigzag persistence via reflections and transpositions. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 181–199. SIAM (2014)
Milosavljević, N., Morozov, D., Skraba, P.: Zigzag persistent homology in matrix multiplication time. In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 216–225 (2011)
Parsa, S.: A deterministic \(O(m\log m)\) time algorithm for the reeb graph. Discrete Comput. Geom. 49(4), 864–878 (2013)
Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 114–122 (1981)
Yan, Z., Ma, T., Gao, L., Tang, Z., Chen, C.: Link prediction with persistent homology: an interactive view. In: International Conference on Machine Learning, pp. 11659–11669. PMLR (2021)
Zhang, S., Mukherjee, S., Dey, T.K.: GEFL: extended filtration learning for graph classification. In: Rieck, B., Pascanu, R. (eds.), Learning on Graphs Conference, LoG 2022, volume 198 of Proceedings of Machine Learning Research, p. 16. PMLR (2022). https://proceedings.mlr.press/v198/zhang22b.html
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dey, T.K., Hou, T., Parsa, S. (2023). Revisiting Graph Persistence for Updates and Efficiency. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-38906-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38905-4
Online ISBN: 978-3-031-38906-1
eBook Packages: Computer ScienceComputer Science (R0)