Skip to main content

Faster Algorithms for Cycle Hitting Problems on Disk Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14079))

Included in the following conference series:

  • 956 Accesses

Abstract

In this paper, we consider three hitting problems on a disk intersection graph: Triangle Hitting Set, Feedback Vertex Set, and Odd Cycle Transversal. Given a disk intersection graph G, our goal is to compute a set of vertices hitting all triangles, all cycles, or all odd cycles, respectively. Our algorithms run in time \(2^{\tilde{O}({k}^{4/5})}n^{O(1)}\), \(2^{\tilde{O}({k}^{9/10})}n^{O(1)}\), and \(2^{\tilde{O}({k}^{19/20})}n^{O(1)}\), respectively, where n denotes the number of vertices of G. These do not require a geometric representation of a disk graph. If a geometric representation of a disk graph is given as input, we can solve these problems more efficiently. In this way, we improve the algorithms for those three problem by Lokshtanov et al. [SODA 2022].

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.RS-2023-00209069).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definition of the treewidth can be found in Sect. 2.

  2. 2.

    We can find a hitting set of size at most 3k as follows: Find a triangle, and add all its vertices to a triangle hitting set. Then remove all its vertices from the graph.

References

  1. Abu-Khzam, F.N.: A kernelization algorithm for \(d\)-hitting set. J. Comput. Syst. Sci. 76(7), 524–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, S., Oh, E.: Feedback vertex set on geometric intersection graphs. In: Proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC 2021), pp. 47:1–47:12 (2021)

    Google Scholar 

  3. Bandyapadhyay, S., Lochet, W., Lokshtanov, D., Saurabh, S., Xue, J.: Subexponential parameterized algorithms for cut and cycle hitting problems on H-minor-free graphs\(\star \). In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2063–2084. SIAM (2022)

    Google Scholar 

  4. Bandyapadhyay, S., Lochet, W., Lokshtanov, D., Saurabh, S., Xue, J.: True contraction decomposition and almost eth-tight bipartization for unit-disk graphs. In: 38th International Symposium on Computational Geometry (SoCG 2022), vol. 224, pp. 11:1–11:16 (2022)

    Google Scholar 

  5. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., Van Der Zanden, T.C.: A framework for exponential-time-hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM J. Comput. 49(6), 1291–1331 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Berg, M., Kisfaludi-Bak, S., Monemizadeh, M., Theocharous, L.: Clique-based separators for geometric intersection graphs. In: 32nd International Symposium on Algorithms and Computation (ISAAC 2021), pp. 22:1–22:15 (2021)

    Google Scholar 

  7. Bonamy, M., et al.: EPTAS and subexponential algorithm for maximum clique on disk and unit ball graphs. J. ACM 68(2), 1–32 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1–2), 3–24 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cygan, M.: Parameterized Algorithms. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  10. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM (JACM) 52(6), 866–893 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Decomposition of map graphs with applications. In: Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), pp. 60:1–60:15 (2019)

    Google Scholar 

  12. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete Comput. Geom. 62(4), 879–911 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 1563–1575 (2012)

    Google Scholar 

  14. Li, J., Nederlof, J.: Detecting feedback vertex sets of size \(k\) in \(O^*(2.7 k)\) time. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pp. 971–989 (2020)

    Google Scholar 

  15. Lokshtanov, D., Narayanaswamy, N., Raman, V., Ramanujan, M., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms (TALG) 11(2), 1–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lokshtanov, D., Panolan, F., Saurabh, S., Xue, J., Zehavi, M.: Subexponential parameterized algorithms on disk graphs (extended abstract). In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pp. 2005–2031

    Google Scholar 

  17. Lokshtanov, D., Saurabh, S., Wahlström, M.: Subexponential parameterized odd cycle transversal on planar graphs. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

    Google Scholar 

  18. Rosenberger, H.: Order-\(k\) voronoi diagrams of sites with additive weights in the plane. Algorithmica 6(1), 490–521 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and related problems. Ph.D. thesis, Department of Computer and Information Science, Linköpings universitet (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinwoo An or Eunjin Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

An, S., Cho, K., Oh, E. (2023). Faster Algorithms for Cycle Hitting Problems on Disk Graphs. In: Morin, P., Suri, S. (eds) Algorithms and Data Structures. WADS 2023. Lecture Notes in Computer Science, vol 14079. Springer, Cham. https://doi.org/10.1007/978-3-031-38906-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38906-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38905-4

  • Online ISBN: 978-3-031-38906-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics