
Faster Algorithms for Cycle Hitting Problems on
Disk Graphs⋆

Shinwoo An, Kyungjin Cho, and Eunjin Oh

POSTECH, Pohang, Korea
{shinwooan,kyungjincho,eunjin.oh}@postech.ac.kr

Abstract. In this paper, we consider three hitting problems on a disk
intersection graph: Triangle Hitting Set, Feedback Vertex Set,
and Odd Cycle Transversal. Given a disk intersection graph G, our
goal is to compute a set of vertices hitting all triangles, all cycles, or
all odd cycles, respectively. Our algorithms run in time 2Õ(k4/5)nO(1),
2Õ(k9/10)nO(1), and 2Õ(k19/20)nO(1), respectively, where n denotes the
number of vertices of G. These do not require a geometric representation
of a disk graph. If a geometric representation of a disk graph is given
as input, we can solve these problems more efficiently. In this way, we
improve the algorithms for those three problem by Lokshtanov et al.
[SODA 2022].

Keywords: Disk graphs, feedback vertex set, triangle hitting set

1 Introduction

In this paper, we present subexponential parameterized algorithms for the follow-
ing three well-known parameterized problems on disk graphs: Triangle Hit-
ting Set, Feedback Vertex Set, and Odd Cycle Transversal. Given
a graph G = (V,E) and an integer k, these problems ask for finding a sub-
set of V of size k that hits all triangles, cycles, and odd-cycles, respectively.
On general graphs, the best-known algorithms for Triangle Hitting Set,
Feedback Vertex Set, and Odd Cycle Transversal run in 2.1knO(1),
2.7knO(1), and 2.32knO(1) time, respectively, where n denotes the number of
vertices of a graph [15,16,20]. All these problems are NP-complete, and more-
over, no 2o(k)nO(1) algorithm exists for these problems on general graphs unless
ETH fails [10]. This motivates the study of these problems on special graph
classes such as planar graphs and geometric intersection graphs.

Although these problems are NP-complete even for planar graphs, much
faster algorithms exist for planar graphs. More specifically, they can be solved
in time 2O(

√
k)nO(1), 2O(

√
k)nO(1), and 2O(

√
k log k)nO(1), respectively, on planar

graphs [11,18]. Moreover, they are optimal unless ETH fails. The 2O(
√
k)nO(1)-

time algorithms for Triangle Hitting Set and Feedback Vertex Set fol-
low from the bidimensionality theory of Demaine at al [11]. A planar graph either
⋆ This work was supported by the National Research Foundation of Korea(NRF) grant

funded by the Korea government(MSIT) (No.RS-2023-00209069)

ar
X

iv
:2

31
1.

03
66

5v
1

 [
cs

.C
G

]
 7

 N
ov

 2
02

3

2 An et al.

has an r × r grid graph as a minor, or its treewidth1 is O(r). This implies that
for a YES-instance (G, k) of Feedback Vertex Set, the treewidth of G is
O(

√
k). Then a standard dynamic programming approach gives a 2O(

√
k)nO(1)-

time algorithm for Feedback Vertex Set. This approach can be generalized
for H-minor free graphs and bounded-genus graphs.

Recently, several subexponential-time algorithms for cycle hitting problems
have been studied on geometric intersection graphs [2,5,6,12,13,14]. Let D be
a set of geometric objects such as disks or polygons. The intersection graph
G = (V,E) of D is the graph where a vertex of V corresponds to an element
of D, and two vertices of V are connected by an edge in E if and only if their
corresponding elements in D intersect. In particular, the intersection graph of
(unit) disks is called a (unit) disk graph, and the intersection graph of interior-
disjoint polygons is called a map graph. Unlike planar graphs, map graphs and
unit disk graphs can have large cliques. For unit disk graphs, Feedback Vertex
Set can be solved in 2O(

√
k)nO(1) time [2], and Odd Cycle Transversal can

be solved in 2O(
√
k log k)nO(1) time [4]. For map graphs, Feedback Vertex Set

can be solved in 2O(
√
k log k)nO(1) time [12]. These are almost tight in the sense

that no 2O(
√
k)nO(1)-time algorithm exists unless ETH fails [12,14].

However, until very recently, little has been known for disk graphs, a broad
class of graphs that generalizes planar graphs and unit disk graphs. Very re-
cently, Lokshtanov et al. [17] presented the first subexponential-time algorithms
for cycle hitting problems on disks graphs. The explicit running times of the al-
gorithms are summarized in the first row of Table 1. On the other hand, the best-
known lower bound on the computation time for these problems is 2Ω(k1/2)nO(1)

assuming ETH. There is a huge gap between the upper and lower bounds.

Our results. In this paper, we make progress on the study of subexponential-
time parameterized algorithms on disk graphs by presenting faster algorithms for
the cycle hitting problems. We say an algorithm is robust if this algorithm does
not requires a geometric representation of a disk graph. We present 2Õ(k4/5)nO(1)-
time, 2Õ(k9/10)nO(1)-time, and 2Õ(k19/20)nO(1)-time robust algorithms for Trian-
gle Hitting Set, Feedback Vertex Set, and Odd Cycle Transversal,
respectively. Furthermore, we present 2Õ(k2/3)nO(1)-time, 2Õ(k7/8)nO(1)-time, and
2Õ(k15/16)nO(1)-time algorithms for Triangle Hitting Set, Feedback Ver-
tex Set, and Odd Cycle Transversal which are not robust. These results
are summarized in the second and third rows of Table 1.

For Triangle Hitting Set, we devised a kernelization algorithm based on
a crown decomposition by modifying the the algorithm in [1]. After a branching
process, we obtain a set of O((k/p) log k) instances (G′, k′) such that G′ has a
set of O(kp) triangles, which we call a core, for a value p. Every triangle of G′

shares at least two vertices with at least one triangle of a core. This allows us to
remove several vertices from G′ so that the number of vertices of G′ is O(kp).

1 The definition of the treewidth can be found in Section 2

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 3

Triangle Hitting FVS OCT robust?

2O(k9/10 log k)nO(1) 2O(k13/14 log k)nO(1) 2O(k27/28 log k)nO(1) yes [17]

2O(k4/5 log k)nO(1) 2O(k9/10 log k)nO(1) 2O(k19/20 log k)nO(1) yes this paper
2O(k2/3 log k)nO(1) 2O(k7/8 log k)nO(1) 2O(k15/16 log k)nO(1) no this paper

Table 1. Comparison of the running times of our algorithms and the algorithm by
Lokshtanov et al. [17]. All algorithms for Odd Cycle Transversal are randomized.

Then we can obtain a tree decomposition of small treewidth, and then we apply
dynamic programming on the tree decomposition.

For Feedback Vertex Set and Odd Cycle Transversal, we give an
improved analysis of the algorithms in [17] by presenting improved bounds on one
of the two main combinatorial results presented in [17] concerning the treewidth
of disk graphs (Theorem 2.1). More specifically, Theorem 1 of [17] says that for
any subset M of V such that N(v)∩M ̸= N(u)∩M for any two vertices u and v
not in M , the size of U is O(|M | ·p6), where p is the ply of the disks represented
by the vertices of G. We improve an improved bound of O(|M | · p2). To obtain
an improved bound, we classify the vertices of V −M into three classes in a more
sophisticated way, and then use the concept of the additively weighted higher-
order Voronoi diagram. We believe the additively weighted higher-order Voronoi
diagram will be useful in designing optimal algorithms for Triangle Hitting
Set, Feedback Vertex Set, and Odd Cycle Transversal. Indeed, the
Voronoi diagram (or Delaunay triangulation) is a main tool for obtaining an
optimal algorithm for Feedback Vertex Set on unit disk graphs [2].

2 Preliminaries

For a graph G, we let V (G) and E(G) be the sets of vertices and edges of G,
respectively. For a subset U of G, we use G[U] to denote the subgraph of G
induced by U . Also, for a subset U ⊂ V of V , we simply denote G[V \ U] by
G− U . For a vertex v of G, let N(v) be the set of the vertices of G adjacent to
v. We call it the neighborhood of v.

A triangle of G is a cycle of G consisting of three vertices. We denote a triangle
consisting of three vertices x, y and z by {x, y, z}. We sometimes consider it as
the set {x, y, z} of vertices. For instance, the union of triangles is the set of all
vertices of the triangles. A subset F of V is called a triangle hitting set of G
if G[V \ F] has no triangle. Also, F is called a feedback vertex set if G[V \ F]
has no cycle (and thus it is forest). Finally, F is called a odd cycle transversal
if G[V \ F] has no odd cycle. In other words, a triangle hitting set, a feedback
vertex set, and a odd cycle transversal hit all triangles, cycles and odd cycles,
respectively. Notice that a feedback vertex set of G is also a triangle hitting set.

Disk graphs. Let G = (V,E) be a disk graph defined by a set D of disks. In
this case, we say that D is a geometric representation of G. For a vertex v of

4 An et al.

G, we let D(v) denote the disk of D represented by v. The ply of D is defined
as the maximum number of disks of D containing a common point. Note that
the disk graph of a set of disks of ply p has a clique of size at least p. If it is
clear from the context, we say that the ply of G is p. The arrangement of D
is the subdivision of the plane formed by the boundaries of the disks of D that
consists of vertices, edges and faces. The arrangement graph of G, denoted by
A(G), is the plane graph where every face of the arrangement of D contained in
at least one disk is represented by a vertex, and vertices are adjacent if the faces
they represent share an edge. Given a disk graph G, it is NP-hard to compute
its geometric representation [9]. We say an algorithm is robust if this algorithm
does not requires a geometric representation of a disk graph.

Tree decomposition. A tree decomposition of an undirected graph G = (V,E)
is defined as a pair (T, β), where T is a tree and β is a mapping from nodes of
T to subsets of V (called bags) with the following conditions. Let B := {β(t) :
t ∈ V (T)} be the set of bags of T .

– For ∀u ∈ V , there is at least one bag in B which contains u.
– For ∀(u, v) ∈ E, there is at least one bag in B which contains both u and v.
– For ∀u ∈ V , the nodes of T containing u in their bags are connected in T .

The width of a tree decomposition is defined as the size of its largest bag minus
one, and the treewidth of G is the minimum width of a tree decomposition of G.
The treewidth of a disk graph G is O(p

√
|V (G)|), where p is the ply of G [17].

Weighted Treewidth of a Disk Graph One of the ingredients of our al-
gorithms is to partition the vertices in each bag of a tree decomposition of G
into cliques. This technique was already used in [5] to design ETH-tight (non-
parameterized) algorithms for various problems on geometric intersection graphs.
To use this observation, they introduced the notion of clique-weighted treewidth.

We fix a geometric representation of G. For a subset U of V , we say the
partition {C1, . . . Cℓ} of U is a clique partition if all disks represented by the
vertices of Ci contain a common point in the plane for each index i. We define
the clique-weight of U as the minimum of

∑
1≤i≤ℓ(log |Ci| + 1) over all clique

partitions {C1, . . . Cℓ} of U . Since a triangle hitting set contains all except for at
most two vertices of Ci, the number of intersections between U and a triangle
hitting set is

∏
1≤i≤t O(|Ci|2) = 2O(w), where w is the clique-weight of U .

A balanced separator Ssep of G is a subset of vertices such that each connected
component of G − Ssep has complexity c|V | for a constant c < 1. De berg et
al. [5] showed that a geometric intersection graph of fat objects has a balanced
separator of small clique-weight.

Lemma 1 ([5]). A disk graph G has a balanced separator Fsep and a clique
partition of Fsep with weight O(

√
n). Moreover, if a geometric representation of

G is given, an Fsep and its clique partition can be computed in polynomial time.

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 5

For a tree decomposition (T, β) of a graph, we define the clique-weighted
width of (T, β) as the maximum weight of a bag of the decomposition. Then the
clique-weighted treewidth of a graph is defined as the minimum clique-weighted
width of a tree decomposition of the graph. In the following, we simply use the
term weight (and weighted width) instead of clique-weight (and clique-weighted
width), if it is clear from the context. Then Lemma 1 implies the following lemma.

Lemma 2. The weighted treewidth of a disk graph G is O(
√
n). Given a geomet-

ric representation of G, we can compute a tree decomposition of G with weighted
treewidth O(

√
n) in polynomial time.

Proof. We construct a tree decomposition (T, β) recursively for a disk graph G
with its geometric representation. Our construction satisfies that a subtree of T
rooted at a node t together with the bags corresponding its nodes forms a tree
decomposition of a subgraph of G, say Gt.

Our construction starts from the root node r of T with Gr = G. For a cur-
rent node t of T , we set β(t) = V (Gt) if the number of vertices of V (Gt) is
O(

√
n). Otherwise, we find a balanced separator Fsep of Gt of size O(

√
|V (Gt)|)

and its clique partition with weight O(
√
n) in polynomial time by Lemma 1.

For each connected component Vi of Gt − Fsep, we recursively construct a tree
decomposition (Ti, βi) of G[Vi]. Then we connect the root of Ti to t so that it
becomes a child of t. In addition to this, we add the vertices of Fsep to the bag of
every node in the subtree rooted at t including t itself. There is no edge between
two different components Vi and Vj . Thus, (T, β) is a tree decomposition of T .
Furthermore, its weight treewidth is O(

√
n) because Fsep is a balanced separa-

tor.

Bounded Ply. If the ply of a geometric representation D of G is bounded, we
can obtain a better bound on the weighted treewidth of G.

Lemma 3. The weighted treewidth of G is at most log p times the treewidth of
A(G). Furthermore, the treewidth of G is at most p times the treewidth of A(G).

Proof. Let (T, β) be a tree decomposition of A(G). We can construct a tree
decomposition (T, β′) of G as follows. Each vertex of A(G) corresponds to a face
of the arrangement of D. Moreover, the disks of D containing a common face of
the arrangement forms a clique in G. For each node t ∈ T , let β′(t) be the set of
the vertices corresponding to disks of D containing faces corresponding to the
vertices of β(t). It is not difficult to see that (T, β′) is a tree decomposition of
G. Then the weighted width (and treewidth) of β′(t) is log p (and p) times the
width of β(t). This implies that the weighted treewidth (and treewidth) of G is
at most log p (and p) times the treewidth of A(G).

Given a tree decomposition of G with weighted width w, Feedback Ver-
tex Set can be solved in 2O(w)n time using a rank-based approach as observed

6 An et al.

in [5].2 Similarly, Triangle Hitting Set and Odd Cycle Transversal can
be solved in 2O(w)n and 2O(w logw)n time, respectively. They can be obtained by
slightly modifying standard dynamic programming algorithms for those prob-
lems as observed in [5]. We briefly show how to do this in Section 5.

Higher-Order Voronoi Diagram. To analyze the treewidth of G of bounded
ply, we use the concept of the higher-order Voronoi diagram. Given a set of n
weighted sites (points), its order-k Voronoi diagram is defined as the subdivision
of R2 into maximal regions such that all points within a given region have the
same k nearest sites. Here, the distance between a site s with weight w and a
point x in the plane is defined as d(s, x) − w, where d(s, x) is the Euclidean
distance between s and x.

Lemma 4 (Theorem 4 in [19]). The complexity of the addictively weighted
order-k Voronoi diagram of m point sites in the plane is O(mk).

3 Triangle Hitting Set

In this section, we present a robust 2O(k4/5 log k)nO(1)-time algorithm for Trian-
gle Hitting Set, which improves the 2O(k9/10 log k)nO(1)-time algorithm of [17].

3.1 Two-Step Branching Process

We first apply a branching process as follows to obtain 2O((k/p) log k) instances
one of which is a YES-instance (G′, k′) of Triangle Hitting Set where every
clique of G′ has size O(p). For a clique C of G and a triangle hitting set F , all
except for at most two vertices of C are contained in F . In particular, if G has a
triangle hitting set of size k, any clique of G has size at most k+2. For a clique
of size at least p, we branch on which vertices of the clique are not included in a
triangle hitting set. After this, the solution size k decrease by at least p− 2. We
repeat this until every clique has size O(p). In the resulting branching tree, every
node has at most O(k2) children since any clique of G has size at most k+2. And
the branching tree has height O(k/p). In this way, we can obtain 2O((k/p) log k)

instances of Triangle Hitting Set one of which is a YES-instance (G′, k′) of
Triangle Hitting Set where G′ has a geometric representation of ply at most
p. Moreover, G′ is an induced subgraph of G, and k′ ≤ k. Using the EPTAS for
computing a maximum clique in a disk graph [8], we can complete the branching
step in 2O((k/p) log k)nO(1) time. Note that the algorithm in [8] does not require
a geometric representation of a graph.
2 De berg et al. [5] showed that Feedback Vertex Set and several problems can be

solved in 2O(
√
n) time for similarly sized objects. Although the other algorithms can-

not be extended to an intersection graph of fat objects, the algorithm for Feedback
Vertex Set can be extended to an intersection graph of fat object. We briefly show
how to solve Feedback Vertex Set in Lemma 17.

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 7

(a) (b) (c)

v1

N∗(v)

v

v2

v6

v3

v4
v5v7

v8

v9
v1 v2

v6

v3

v4
v5v7

v8

v9

Fig. 1. (a) The four gray triangles, v1v2v8, v1v6v8, v1v7v8 and v3v5v6, form a core. A
triangle of G not in the core shares two vertices with at least one gray triangle. (b)
The marked edges are colored gray. Then N∗(v) has a matching of size four. (c) The
vertices in the initial set of F are v1, v2, v3, v5, v7, v8. We add two three gray triangles
v1v2v8, v1v7v8, v3v5v6 to W . Note that W is not yet a core because of v6v8v9.

For each instance (G, k) obtained from the first branching, we apply the
second branching process to obtain 2O(k/p) instances one of which is a YES-
instance having a core of size O(pk). A set W of triangles of G is called a core if
for a triangle of G, a triangle of W shares at least two vertices with the triangle.
See Fig. 1(a). During the branching process, we mark an edge to remember that
one of its endpoints must be added to a triangle hitting set. The marking process
has an invariant that no two marked edges share a common endpoint, and thus
the number of marked edges is at most k. The marks will be considered in the
dynamic programming procedure. Initially, all edges are unmarked.

Let v be a vertex such that N∗(v) has a matching of size at least p, where
N∗(v) be the set of neighbors of v not incident to any marked edge. See Fig. 1(b).
In this case, a triangle hitting set contains either v or at least one endpoint of
each edge in the matching. We branch on whether or not v is added to a triangle
hitting set. For the first case, we remove v and its adjacent edges, and decrease
k by one. For the second case, we know that at least one endpoint of each edge
in the matching must be contained in a triangle hitting set. However, we do not
make a decision at this point. Instead, we simply mark all such edges.

Lemma 5. The total number of instances from the two-step branching process
is 2O((k/p) log k). Moreover, the branching process runs in 2O((k/p) log k)nO(1) time.

Proof. Recall that the first branching step produces 2O((k/p) log k) instances. Let
(G′, k′) be an instance of Triangle Hitting Set we produce during the second
branching process. Let N(k′,m′) be the number of instances produced by (G′, k′)
where G′ has m′ marked edges. By construction, we produce two instances: one
has parameter k′ − 1, and one has at least m′ + p marked edges. Thus we have

N(k′,m′) ≤ N(k′ − 1,m′) +N(k′,m′ + p).

Since N(0, ·) = 0, N(·, k) = 0, we have N(k, 0) = 2O(k/p). Therefore, the total
number of instances obtained from the two-step branching process is 2O((k/p) log k).
Moreover, since our algorithm runs in polynomial time per instance, the total

8 An et al.

running time is 2O((k/p) log k)nO(1).

This branching process was already used in [17]. The following lemma is a
key for our improvement over [17].

Lemma 6. Let (G, k) be a YES-instance obtained from the two-step branching.
Then G has a core of size O(pk), and we can compute one in polynomial time.

Proof. We construct a core W of G as follows. Let F0 be the the union of a
triangle hitting set of size at most 3k and the set of all endpoints of the marked
edges, which can be computed in polynomial time.3 Note that, the size of F0 is
at most O(k). Then let W be the set of triangles constructed as follows: for each
edge xy of G[F0], we add an arbitrary triangle of G formed by x, y and v ∈ V \F0

to W , if it exists. The number of triangles in W is O(pk) by Lemma 7.
At this moment, W is not necessarily a core. See Fig. 1(c). Thus we add

several triangles further to W to compute a core of G. By the branching process,
for every vertex v of F0, N(v) \ F0 has a maximum matching of size at most p.
We add the triangles formed by v and the edges of the maximum matching to
W for every vertex v of F0. Note that we do not update F0 during this phase,
and thus triangles added to W due to two different vertices might intersect. This
algorithm clearly runs in polynomial time. Moreover, since the size of F0 is O(k),
we add at most O(pk) triangles to W , and thus the size of W is O(pk).

We claim that W is a core of G. Let {x, y, z} be a triangle of G not in W . Since
F0 contains a triangle hitting set of size at most 3k, it must contain at least one
of x, y and z. If at least two of them, say x and y, are contained in F0, then there
exists a triangle having edge xy in W by construction. Thus, {x, y, z} shares two
vertices with such a triangle. The remaining case is that exactly one of them,
say x, is contained in F0. In this case, we have considered x and a maximum
matching of N(x) \ F0. The only reason why {x, y, z} is not added to W is that
the edge yz is adjacent to another edge y′z′ for some other triangle {x, y′, z′}.
Then {x, y′, z′} is added to W . Note that {x, y, z} and {x, y′, z′} share at least
two vertices, and thus {x, y, z} satisfies the condition for W being a core.

Lemma 7. For a subset F of V of size O(k), G[F] has O(pk) edges.

Proof. We use a charging scheme. For each edge uv of G[F], we charge it to
the smaller disk among the disks represented by u and v. Then each disk D is
charged by O(p) edges. This is because D is intersected by O(p) disks larger
than D. To see this, recall that the ply of D is at most p due to the first branch-
ing process. Since the size of F is O(k), the number of edges of G[F] is O(pk).

The following observation will be used in the correctness proof of the kernel-
ization step in Section 3.2. The observation holds because G′ does not have any
triangle not appearing in G.
3 We can find a hitting set of size at most 3k as follows: Find a triangle, and add all

its vertices to a triangle hitting set. Then remove all its vertices from the graph.

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 9

I

H

remaining
vertices GI,H

Fig. 2. The edges in the matching M in GI,H are colored gray.

Observation 1. Let G′ be an induced subgraph of G such that V (G′) contains
all vertices of a core W of G. Then W is a core of G′.

For each instance (G, k) obtained from the branching process, we apply the
cleaning step that removes all vertices not hitting any triangle of G from G.
Specifically, we remove a vertex of degree less than two. Also, we remove a
vertex whose neighbors are independent. Whenever we remove a vertex, we also
remove its adjacent edges.

3.2 Kernelization Using Crown Decomposition

Let (G, k) be a YES-instance we obtained from the branching process. We show
that if the number of vertices of G contained in the triangles of G is at least
pk, we can construct a crown for the triangles of G. Then using this, we can
produce a YES-instance (G′, k) of Triangle Hitting Set in polynomial time
where G′ is a proper induced subgraph of G. Thus by repeatedly applying this
process (at most n2 times) and then by removing all vertices not contained in
any triangle of G, we can obtain a YES-instance (G′, k) where G′ is a disk graph
of complexity O(pk).

We first define a crown decomposition of a graph for triangles. For illustra-
tion, see Fig. 2. A crown decomposition of a graph was initially introduced to
construct a linear kernel for Vertex Cover. Later, Abu-Khzam [1] generalized
this concept to hypergraphs. Using this, he showed that a triangle hitting set
admits a quadratic kernel for a general graph. In our case, we will show that the
size of a kernel is indeed O(pk) due to the branching process. More specifically,
it is due to the existence of a core of size O(pk).

Definition 1 ([1]). A crown for the triangles of G is a triple (I,H,M) with a
subset I of V (G), a subset H of E(G), and a matching M of GI,H s.t.

– no two vertices of I are contained in the same triangle of G,
– each edge of H forms a triangle with some vertex of I, and
– every edge (vertex in GI,H) of H is matched under M ,

where GI,H is the bipartite graph with vertex set I ∪ H such that x ∈ I and
uv ∈ H are connected by an edge if and only if u, v and x form a triangle.

10 An et al.

If a crown (I,H,M) for the triangles of G exists, we can remove all vertices
in I, but instead, we mark all edges of H. Then the resulting graph also has a
triangle hitting set of size at most k [1].

Lemma 8 ([1, Lemma 2]). Let (G = (V,E), k) be a YES-instance of Trian-
gle Hitting Set, and (I,H,M) is a crown for the triangles of G. Then the
subgraph of G obtained by removing all vertices of I and by marking all edges of
H has a trianlge hitting set of size at most k.

Proof. To make the paper self-contained, we give a proof of this lemma, but
one can find this proof also in [1]. Let F be a triangle hitting set of G of size
k. We construct another hitting set F ′ from F not containing any vertex of I
as follows. We initialize F ′ as F . If there is an edge uv of H u /∈ F and v /∈ F ,
then x must be contained in F ′, where the edge {x, uv} of GI,H is in M . Then
we replace x with u. We repeat this until at least one vertex of all edges of H is
contained in F ′. Then |F ′| ≤ |F | = k.

We claim that F ′ is also a triangle hitting set. A triangle not intersecting I is
hit by F ′ by construction. Thus consider a triangle {x, u, v} intersecting I. Since
no two vertices of I are contained in the same triangle, exactly one of x, u and
v, say x, is contained in I. Since every edge of H is matched under M , uv ∈ H.
Since F ′ contains either u or v, {x, u, v} is hit by F ′. Therefore, F ′ is a triangle
hitting set of size at most k.

Now we show that (G, k) has a crown for its triangles if cpk vertices are
contained in the triangles of G, where c is a sufficiently large constant. Let W be
a core of G of size O(pk), which exists due to Lemma 6 and Observation 1. Let
I be the set of vertices of G not contained in any triangle of W but contained in
some triangle of G. If cpk vertices are contained in the triangles of G, the size
of I is c′pk for a sufficiently large constant c′ since |W | = O(pk). Then let H
be the set of all edges of G which form triangles together with the vertices of I.
Note that for every edge of H, its endpoints are contained in the same triangle
of W by the definition of the core. Thus the size of H is at most 3 · |W | = O(pk).
Therefore, if more than cpk vertices are contained in the triangles of G, |I| > |H|.

Lemma 9. If |I| > |H|, there are two subsets H ′ ⊆ H and I ′ ⊆ I such that
(I ′, H ′,M ′) is a crown for the triangles of G.

Proof. Let GI,H be the bipartite graph defined in Definition 1. Notice that I is
an independent set in GI,H since GI,H is bipartite. Let X be a minimum vertex
cover of GI,H . Also, let M be a matching of size |X| of GI,H such that every
edge in a matching is incident to exactly one vertex of X. Then let I ′ = I \X,
and H ′ = H ∩X. Also, let M ′ be the set of edges of M having their endpoints
on I ′ ∪H ′. Since |I| > |H|, I is not fully contained in X, and thus I ′ ̸= ∅.

Then we show that (I ′, H ′,M ′) is a crown for the triangles of G. First, I ′
does not violate the condition in Definition 1 since I ′ ⊂ I. Then consider the
condition for H ′. Note that H ′ is contained in X, and I ′ does not intersect X.
Thus for all triangles {x, u, v} with x ∈ I ′, uv must be in H, and then uv must

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 11

be in H ′. Therefore, H ′ is the set of all edges of G′ that form triangles together
with the vertices of I ′, and thus H ′ satisfies the secons condition in Definition 1.
Also, by construction, GI′,H′ is a subgraph of GI,H such that all edges of M ′

are in GI′,H′ , and thus H ′ are matched under M ′.

By Lemma 8 and Lemma 9, we can obtain an instance (G′, k′) equivalent
to (G, k) such that the union of the triangles has complexity O(pk) for each
instance (G, k) obtained from Section 3.1 in polynomial time.

Theorem 1. Given a disk graph G with its geometric representation, we can
find a triangle hitting set of G of size k in 2O(k2/3 log k)nO(1) time, if it exists.
Without a geometric representation, we can do this in 2O(k4/5 log k)nO(1) time.

Proof. After the branching and kernelization processes, we have 2O((k/p) log k)

instances one of which is a YES-instance such that the size of the union of
the triangles of G′ is at most O(pk). For each instance (G′, k′), we remove all
vertices not contained in any triangle of G′. Then the resulting graph G′ has
O(pk) vertices. Then we compute a tree decomposition (T, β) of G′ of weighted
treewidth O(

√
pk) using Lemma 2.

By applying dynamic programming on (T, β) as described in Lemma 16, we
can find a triangle hitting set of size k′ in 2O(

√
pk) time if it exists. Therefore,

the total running time is 2O(
√
pk) · 2O((k/p) log k). By letting p = k1/3, we have

2O(k2/3 log k)nO(1)-time.
If we are not given a geometric representation, we cannot use a tree de-

composition of bounded weighted width. Instead, we can compute a tree de-
composition (T, β) of G′ of treewidth O(p

√
pk). Then the total running time

is 2O(p3/2
√
k) · 2O((k/p) log k). By letting p = k1/5, we have 2O(k4/5 log k)nO(1)-

time.

4 Feedback Vertex Set and Odd Cycle Transversal

In this section, we show that the algorithms in [17] for Feedback Vertex Set
and Odd Cycle Transversal indeed take 2Õ(k9/10)nO(1) time and 2Õ(k19/20)nO(1)

time algorithms respectively. It is shown in [17] that they take 2O(k13/14)nO(1)

time and 2O(k27/28)nO(1) time, respectively, but we give a better analysis. We
can obtain non-robust algorithms for these problems with better running times,
but we omit the description of them.

We obtained better time bounds by classifying the vertices in a kernel used
in [17] into two types, and by using the higher order additively weighted Voronoi
diagrams. To make the paper self-contained, we present the algorithms in [17]
here. The following lemma is a main observation of [17]. Indeed, the statement
of the lemma given by [17] is stronger than this, but the following statement is
sufficient for our purpose. We say a vertex v is deep for a subset F of V if all
neighbors of v in G are contained in F . For a subset Q of V (G), let G/Q be the

12 An et al.

graph obtained from G by contracting each connected component of G[Q] into
a single vertex.

Lemma 10 (Theorem 1.2 of [17]). Let G be a disk graph that has a realiza-
tion of ply p. For a subset F of V , let F ∗ be the union of F and the set of all
deep vertices for F . If F contains a core of G, then the arrangement graph of
G/Q has treewidth O(max{

√
|F ∗| · w · p1.5, w}) for a set Q ⊆ V \ F ∗, where w

is the treewidth of (G− F ∗)/Q.

In Section 4.1, we show that the size of F ∗ is O(p2|F |). This is our main
contribution in this section. Then we solve the two cycle hitting problems using
dynamic programming on a tree decomposition of bounded treewidth.

Branching and Cleaning Process. We first apply the two-step branching
process as we did for Triangle Hitting Set. Note that if a vertex set F is a
feedback vertex set or odd cycle transversal, then F is a triangle hitting set.

We apply the cleaning process for each instance (G, k) we obtained from the
earlier branching process. First, we remove all vertices of degree one. Then we
keep O(1) vertices from each class of false twins as follows. A set of vertices is
called a false twin if they are pairwise non-adjacent, and they have the same
neighborhood. As observed in [17], for each class of false twins, every minimal
feedback vertex set either contains the entire class except for at most one vertex,
or none of the vertices in that class. Thus we keep only one vertex (an arbitrary
one) from each class of false twins if (G, k) is an instance of Feedback Vertex
Set. Similarly, for each class of false twins, every odd cycle transversal contains
the entire class except for at most two vertices, or none of the vertices in that
class. Therefore, when we deal with Odd Cycle Transversal, we keep only
two vertices from each class of false twins. We remember how many vertices each
kept vertex represents and make use of this information in DP.

We have 2O((k/p) log k) instances one of which is a YES-instance (G, k) where
G has a core of size O(pk) and a geometric representation of ply p. Moreover, at
most two vertices are in each class of false twins.

4.1 The Number of Deep Vertices

Let (G, k) be an YES-instance obtained from the branching and cleaning process.
Let F be a subset of V (G) containing a core of G. The disks of G− F have ply
at most two. In this section, we give an upper bound on the number of deep
vertices for F . For this, we classify the vertices of V − F in two types: regular
and irregular vertices. See Fig. 3(a).

Definition 2. A vertex v of V −F is said to be irregular if v belongs to one of
the following types:

– D(v) contains a vertex of A,
– D(v) is contained in a face of A,
– D(v) contains a disk represented by a vertex of F , or

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 13

(a) (b)

D2D1

D3

D

f ∩D

Fig. 3. (a) The vertices of F are colored black, and the vertices of V − F are colored
red. D1 is deep and irregular, D2 is deep and regular, and D3 is shallow and irregular.
(b) D is irregular due to the fourth case of Definition 2.

– D(v) intersects three edges of A incident to the same face of A,

where A denotes the arrangement of the disks represented by F . If v does not
belong to any of the types, we say v is regular.

Lemma 11. The number of deep and regular vertices is O(p2|F |).

Proof. If v is regular, the neighbors of v in G form two cliques. To see this,
observe that the part of A restricted to D(v) consists of parallel arcs. That is,
the arcs can be sorted in a way that any two consecutive arcs come from the same
face of A. Also, any two arcs which are not consecutive in the sorted list are not
incident to a common face of A. In this case, there are two points x and y on the
boundary of D(v) such that the line segment xy intersects all disks represented
by F intersecting D(v). Then the disks of F intersecting D(v) contains either x
or y. Therefore, the neighbors of v form at most two cliques.

Since each clique has size at most p, a deep and regular vertex has at most
2p neighbors in G. Let v be a deep and regular vertex having exactly r neigh-
bors. Consider the additively weighted order-r Voronoi diagram rVD of F . Here,
the distance between a disk D′ of F and a point x in the plane is defined as
d(c, x) − w, where c is the center of D′ and w is the radius of D′. Then the
center of D(v) is contained in a Voronoi region of the order-r Voronoi diagram
whose sites are exactly the neighbors of v. Since no two deep vertices have the
same neighborhood in F , each Voronoi region contains at most one deep vertex.
Therefore, the number of deep and regular vertices having exactly r neighbors
is linear in the complexity of rVD for r ≤ 2p. By Lemma 4, its complexity is
O(r|F |). Thus, the number of deep and regular vertices of G is O(p2|F |).

For irregular vertices, we make use of the fact that the ply of the disks
represented by those vertices is at most two. It is not difficult to see that the
number of irregular vertices of the first three types is O(p|F |). This is because
the complexity of A is O(p|F |). To analyze the number of irregular vertices of
the fourth type, we use the following lemma.

14 An et al.

(a) (b)

Fig. 4. (a) S is the polygon with vertices marked with black disks, and each region of
F has vertices marked with white boxes. (b) The vertices of H are marked with white.

Lemma 12. Let S be a connected region with |S| edges in the plane, and F be
a set of interior-disjoint regions contained in S such that each region intersects
at least three edges of S. Then the number of regions of F is O(|S|). Also, the
total number of vertices of the regions of F is O(|S|).

Proof. We consider the following planar graph H: each vertex of H corresponds
to an edge of S. Also, for each region of F with vertices x1, x2, . . . , xt in order,
we add edges connecting the vertices corresponding to the edges of S containing
xi and xi+1 for all indices 1 ≤ i < t. In addition to this, for each vertex v of
S, we add an edge connecting the vertices of H corresponding the two edges of
S incident to v. See Fig. 4. There might be parallel edges in H, but a pair of
vertices has at most two parallel edges. Let F1 be the set of faces bounded by a
pair of parallel edges, and let F2 be the set of the other faces of H. Then each
region of F corresponds to a face of F2. To prove the first part of the lemma, it
suffices to show that the size of F2 is linear in the number of edges of S.

By the Euler’s formula, |EH | ≤ |VH |+|F1|+|F2|−2, where VH and EH denote
the set of vertices and edges of H, respectively. Note that no vertex of H has
degree at most one. Since every face of F2 is incident to at least three edges of H,
and every edge of EH is incident to exactly two faces of H, 2|EH | ≥ 3|F2|+2|F1|.
Thus we have 2|F1|+3|F2| ≤ 2|VH |+2|F1|+2|F2|−4. That is, |F2| ≤ 2|VH |−4.
This implies the first part of the lemma.

Now consider the second part of the lemma. Since a pair of vertices has at
most two parallel edges, |F1| ≤ |EH |/2. Therefore, |EH | ≤ 2|VH | + 2|F2| − 4 =
O(|VH |). Since every edge of the regions of F corresponds to an edge of H, the
total number of edges of the regions of F is O(|S|), and thus the total number
of vertices of them is O(|S|).

Lemma 13. The number of irregular vertices of V is O(p|F |).

Proof. Since the complexity of A is O(p|F |), the number of vertices of G be-
longing to the first three cases is O(p|F |). For the fourth case in Definition 2,
let f be a face of A such that D∩ f has at least three circular arcs which comes
from the boundary of f . In this case, we replace D with D∩f . Since D∩f ⊆ D,
all resulting regions have ply two. See Fig. 3(b). For a face f having |f | edges,
there are O(|f |) such regions by Lemma 12. Therefore, the number of vertices

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 15

belonging to the fourth case is linear in the complexity of A, which is O(p|F |).
Therefore, the lemma holds.

4.2 Feedback Vertex Set

In this section, we show how to compute a feedback vertex set of size k in
2Õ(k7/8)nO(1) time, if it exists. Without a geometric representation of G, we
can do this in 2Õ(k9/10)nO(1) time. Let (G, k) be an YES-instance of Feedback
Vertex Set from the branching and cleaning processes. Then we have a core
W of G of size O(pk). Let F be the union of a feedback vertex set of size 2k and
the vertex set of all triangles of core W of G, and let F ∗ be the union of F and
all deep vertices for F . The size of F ∗ is O(p3k) by Lemmas 11 and 13. Since
F ∗ contains a feedback vertex set, G− F ∗ is a forest.

Therefore, the treewidth of G is O(p4
√
k) by Lemma 10. Then we compute a

tree decomposition of treewidth O(p4
√
k), and then apply a dynamic program-

ming on the tree decomposition to solve the problem in 2O(p4
√
k) time. The total

running time is 2O(k9/10 log k)nO(1) by setting p = k1/10. The weighted treewidth
of G is O(p3

√
k log p) by Lemmas 3 and 10. If we have a geometric representa-

tion of G, we compute a tree decomposition (T, β) of G′ of weighted treewidth
O(p3

√
k log p) using Lemma 2. By applying dynamic programming on (T, β)

as described in Lemma 17, we can compute a feedback vertex set of size k in
2O(p3

√
k log p) time. Note that the dynamic programming on Feedback Vertex

Set requires global connectivity information but we can track the connectiv-
ity by rank-based approach. See also [5]. Since we have 2O((k/p) log k) instances
from branching process, the total running time is 2O(k7/8 log k)nO(1) by setting
p = k1/8.

Theorem 2. Given a disk graph G, we can find a feedback vertex set of size k

in 2O(k9/10 log k)nO(1) time, if it exists. Given a disk graph G together with its
geometric representation, we can do this in in 2O(k7/8 log k)nO(1) time.

4.3 Odd Cycle Transversal

In this section, we present an 2O(k19/20 log k)nO(1)-time randomised algorithm for
Odd Cycle Transversal when a geometric representation of G is given. In the
case of Odd Cycle Transversal, we do not know how to solve the problem
without using a geometric representation of G. The algorithm in [17] also uses
a geometric representation in this case.

Let (G, k) be an YES-instance of Odd Cycle Transversal obtained from
the branching and cleaning processes. We have a core W of G of size O(pk). Let
F be the union of the triangles of W . Furthermore, let F ∗ be the union of F
and the set of all deep vertices for F of size O(p3k) by Lemmas 11 and 13. Let
G∗ = G− F ∗. Since G∗ does not contain a triangle, it is planar. Thus we use a
contraction-decomposition theorem on G∗ of [3].

16 An et al.

Lemma 14 (Lemma 1.1 of [3]). Let G be a planar graph. Then for any
t ∈ N, there exist disjoint sets Z1, . . . , Zp ⊆ V (G) such that for every i ∈ [t] and
every Z ′ ⊆ Zi, treewidth of G/(Zi \ Z ′) is O(t+ |Z ′|). Moreover, these sets can
be computed in polynomial time.

In particular, we set t =
√
k and compute t sets Z1, . . . , Zt of vertices of

V \F ∗ such that for any Zi and any Z ′ ⊆ Zi, G∗/(Zi \Z ′) has treewidth at most
O(

√
k+ |Z ′|). Then there is an index i such that for a fixed odd cycle transversal

S, S ∩ Zi has size O(
√
k). We iterate over every choice of i, and every choice of

Z ′ = S ∩ Zi of size at most O(
√
k). Due to the following lemma, the number of

choices of Z ′ we have to consider is (kO(1))
√
k = 2O(

√
k log k).

Lemma 15 ([17]). One can compute a candidate set of size kO(1) for a solu-
tion of the Odd Cycle Transversal problem in polynomial time with success
probability at least 1− 1/2n.

For each iteration, we contract Zi\Z ′ and then apply a dynamic programming
on a tree decomposition of G/(Zi \ Z ′). The number of iterations is 2O(

√
k log k),

and G∗/(Zi\Z ′) has treewidth O(
√
k). By Lemma 3, the weighted treewidth and

the treewidth of G/(Zi \Z ′) are O(p3k3/4 log p) and O(p4k3/4), respectively. We
obtain the desired running times by setting p = k1/16 (for a robust algorithm)
and p = k1/20 (for a non-robust algorithm). Then Lemma 18 implies the following
theorem.

Theorem 3. Given a disk graph G, we can find a odd cycle transversal of size
k in 2O(k19/20 log k)nO(1) time w.h.p. Given a disk graph G together with its geo-
metric representation, we can do this in in 2O(k15/16 log k)nO(1) time w.h.p.

5 DP on a Tree Decomposition of Bounded Treewidth

In this section, we give dynamic programming algorithms for Triangle Hit-
ting Set, Feedback Vertex Set, and Odd Cycle Transversalon bounded
weighted treewidth graphs. Let (T, β) be a tree decomposition of G with weighted
width O(w). Recall that β(t) has a clique partition of weight O(w). Let C(t) be
the set of cliques in the clique partition of β(t), and let D(t) be the set of disks
represented by the vertices of β(t). Also, we slightly abuse the notation so that
D(C) denotes the set of disks represented by the vertices of a clique C. For the
set V ⊂ D of disks, we again abuse the notation so that G[V] denotes the sub-
graph of G induced by the set of vertices whose corresponding disk is contained
in V. A tree decomposition (T, β) is nice if T is a rooted tree and each node t of
T belongs to one of the four categories:

– Leaf node. β(t) is empty.
– Introduce node. t has exactly one child t′ s.t C(t) = C(t′) ∪ {C} for some

C /∈ C(t′)
– Forget node. t has exactly one child t′ s.t C(t) = C(t′) \ {C} for some

C ∈ C(t′)

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 17

– Join node. t has two children t1, t2 s.t C(t) = C(t1) = C(t2).

It is not difficult to see that, given a tree decomposition with weighted width
w, we can compute a nice tree decomposition with weighted width O(w) in
polynomial time. It is well known that we can convert a tree decomposition of
width w into a tree decomposition of width O(w) [10]. A slight modification of
this conversion preserves the weighted width and the size of a tree asymptotically.
Therefore, we may assume that (T, β) is a nice tree decomposition of weighted
width O(w). Moreover, the number of nodes of T is O(wn). Also, let Vt be the
union of D(t′) for all nodes t′ in the subtree of T rooted at t.

Lemma 16. Given a tree decomposition (T, β) of G of weighted treewidth w, we
can solve Triangle Hitting Set in 2O(w)n time.

Proof. For each node t and each subset S of D(t), we define the subproblem of
Triangle Hitting Set as

c[t,S] =

{
minS⊂S′⊂Vt

|S ′| s.t G[Vt \ S ′] is triangle-free
∞ if there is no such S ′

A solution of Triangle Hitting Set must contain all but two vertices from
each clique. Therefore, since∏

Ci∈C
|Ci|2 = exp

(∑
Ci∈C

2 log |Ci|

)
= 2O(w),

for each node t, all but 2O(w) subproblems are set to infinity. We say that a
subproblem c[t,S] has a solution if it has a finite value. Moreover, we say S ′ is
a partial solution of c[t,S] if S ⊂ S ′ ⊂ Vt and G[Vt \ S ′] is triangle-free. We
say that a partial solution is optimal for c[t,S] if its size is minimum among all
partial solutions. We give formulas for each of the four cases, and then apply
these formulas in a bottom-up manner on T . Eventually, we compute c[r, ∅],
where r is the root of T .

Leaf node. If t is a leaf, we have only one subproblem c[t, ∅] = 0.

Introduce node. Let t has one child t′ with C(t) = C(t′) ∪ {C}. We claim that
the following formula holds:

c[t,S] =

{
c[t′,S \ D(C)] + |S ∩ D(C)| if G[D(t) \ S] is triangle-free
∞ otherwise.

Consider a possible optimal partial solution S ′ for the subproblem c[t,S]. Then
S ′ ∩D(t′) is exactly S \D(C), and S ′ \D(C) is also a partial solution of c[t′,S \
D(C)]. To see the S ′ \ D(C) is optimal for c[t′,S \ D(C)], suppose that there is
an optimal partial solution S ′′ for c[t′,S \D(C)] such that S ′′∩D(t′) = S \D(C).
Then S ′′ ∪ S is also a solution of c[t,S] because the disk D in D(C) dose not
intersect to a disk in Vt\D(t). Therefore, S ′\D(C) is an optimal partial solution
of c[t′,S \ D(C)], so the formula holds.

18 An et al.

Forget node. Let t has one child t′ with C(t) = C(t′) \ {C}. We claim that the
following formula holds:

c[t,S] = min
A⊂D(C)

c[t′,S ∪ A]

For an optimal partial solution S ′ for c[t,S], we set A = S ′∩D(C). Since Vt = Vt′ ,
S ′ is a partial solution of c[t′,S ∪A]. Conversely, suppose c[t′,S ∪A] is minimum
among all A ⊂ D(C). Let S ′ be an optimal partial solution of c[t′,S ∪A]. Then
S ′ is also a partial solution of c[t, C] because Vt1 = Vt and S ′ ∩ D(t) = S.

Join node. Let t has two children t1 and t2. We claim that

c[t,S] = c[t1,S] + c[t2,S]− |S|.

Let S ′ is an optimal partial solution of c[t,S]. Then S ∩ Vt1 (and S ∩ Vt2) is a
partial solution of c[t1,S] (and c[t2,S]). Conversely, if there are optimal partial
solutions S1 of c[t1,S] and S2 of c[t2,S], we show that S1 ∪ S2 is a partial
solution of c[t,S]. Suppose there are three disks Dx, Dy, Dz ∈ Vt1 ∪ Vt2 that
pairwise intersect. We may assume that Dx, Dy ∈ Vt1 . If Dz ∈ Vt1 , an induced
subgraph G[{Dx, Dy, Dz}] of G[Vt1] is a triangle. Then the partial solution S1

of c[t1,S] must hit one of the three disks Dx, Dy and Dz. Otherwise, both Dx

and Dy intersect with Dz ∈ Vt2 \ Vt1 , which implies that Dx, Dy ∈ D(t2). Then,
the partial solution S2 of c[t2,S] hits the triangle. For both cases, S1 ∪ S2 hits
the set of three disks. Therefore, S1 ∪ S2 is a partial solution of c[t,S].

Now we compute all finite c[t,S] of node t in 2O(w) time. The total time
complexity is 2O(w)n because the number of nodes in tree is O(wn).

Lemma 17. Given a tree decomposition (T, β) of G of weighted treewidth w, we
can solve Feedback Vertex Set in 2O(w)n time.

Proof. (Sketch.) A dynamic programming for Feedback Vertex Set is more
involved because we need to maintain global connectivity information. In par-
ticular, for each node t, each subset S of D(t) and each partition P of D(t) \ S,
we define the subproblem of Feedback Vertex Set as

c[t,S,P] = min
S⊂S′⊂Vt

|S ′| s.t G[Vt \ S ′] is cycle-free, and (1)

for each P ∈ P, the vertices corresponding to disks in P (2)
are contained in a same connected component ofG[Vt \ S′] (3)

We say that the subproblem has a solution if such a superset S ′ of S exists.
Then we say S ′ is a partial solution of c[t,S,P]. Similar to Lemma 16, we have
2O(w) choices of S that c[t,S, ·] has a solution.

Intuitively, if S ′ is a partial solution and D1, D2 are contained in the same
partition class of P, then two vertices of G correspond to D1 and D2 are in the
same connected component of G[Vt \ S′]. However, the number of choices of P

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 19

is wO(w) because |Vt \ S ′| = O(w). To reduce the number of subproblems we
have to consider, we use a rank-based approach [7]. The rank-based approach
ensures that for the fixed S, there are 2O(w) partitions among all possible wO(w)

choices of P so that they cover all possibilities of the connected components of
G[Vt \ S ′].

One small issue is that the rank-based approach is designed to get maximum
connectivity whereas in Feedback Vertex Set we are aim to minimize the
connectivity. As did in [7], we add a special universal vertex v0 to the graph
G[Vt] and increase the weighted width by 1. Now the task is to determine if
there is a connected subgraph of G[Vt] that contains v0 after deleting a partial
solution S ′ from G[Vt]. In particular, the task is to compute maximum connec-
tivity among graphs of k = O(w) vertices and k − 1 edges. Now we use the
rank-based approach and we compute 2O(w) partitions P for each node t and
each subset S ⊂ D(t). This completes the proof.

Lemma 18. Given a tree decomposition (T, β) of G of weighted treewidth w, we
can solve Odd Cycle Transversal in 2O(w)n time.

Proof. (Sketch.) For each node t and each function f : D(t) → {0, 1, 2}, we define
the subproblem of Odd Cycle Transversal as

c[t, f] =min
g

|g−1(0)| where g : Vt → {0, 1, 2} s.t

g(x) = f(x) if x ∈ D(t) & ∀(x, y) ∈ E(G[Vt]), {g(x), g(y)} ≠ {1, 2}

Similar to Lemma 16, we say that g : Vt → {0, 1, 2} is a partial solution of c[t, f]
if g satisfies the conditions of the definition above. Also, we say g is optimal if
the size of |g−1(0)| is minimum over all partial solutions of g[t, f]. Intuitively, as
a solution g of a subproblem c[t, f], we remember not only the set of disks to be
deleted as in Lemma 16 but also the bipartition of Vt \ f−1(0). The number of
subproblems that have a solution is again 2O(w) because for each clique C ∈ C(t),
all but two vertices should be mapped to zero. We focus on the join nodes because
the formulas of other categories can be obtained in a straightforward way. Similar
to Triangle Hitting Set, we claim that the following formula holds:

c[t, f] = c[t1, f] + c[t2, f]− |f−1(0)|

The disk D1 in Vt1 \ Vt2 and the disk D2 in Vt2 \ Vt1 do not intersect by def-
inition. Therefore, if g is an optimal partial solution of c[t, f], the domain re-
striction g1 (and g2) of g with respect to Vt1 (and Vt2) is a partial solution of
c[t1, f] (and c[t2, f]). Conversely, the domain union of two optimal partial solu-
tions g1 (and g2) of c[t1, f] (and c[t2, f]) makes a partial solution of Vt because
g1(x) = g2(x) = f(x) for all x ∈ D(v). This shows that the formula holds. Then
Odd Cycle Transversal can be solved in 2O(w)nO(1) time.

20 An et al.

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. Journal of Computer
and System Sciences 76(7), 524–531 (2010)

2. An, S., Oh, E.: Feedback Vertex Set on Geometric Intersection Graphs. In: Pro-
ceedings of the 32nd International Symposium on Algorithms and Computation
(ISAAC 2021). pp. 47:1–47:12 (2021)

3. Bandyapadhyay, S., Lochet, W., Lokshtanov, D., Saurabh, S., Xue, J.: Subexponen-
tial parameterized algorithms for cut and cycle hitting problems on H-minor-free
graphs⋆. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). pp. 2063–2084. SIAM (2022)

4. Bandyapadhyay, S., Lochet, W., Lokshtanov, D., Saurabh, S., Xue, J.: True con-
traction decomposition and almost eth-tight bipartization for unit-disk graphs. In:
38th International Symposium on Computational Geometry (SoCG 2022). vol. 224,
pp. 11:1–11:16 (2022)

5. de Berg, M., Bodlaender, H.L., Kisfaludi-Bak, S., Marx, D., Zanden, T.C.v.d.: A
framework for Exponential-Time-Hypothesis–tight algorithms and lower bounds
in geometric intersection graphs. SIAM Journal on Computing 49(6), 1291–1331
(2020)

6. de Berg, M., Kisfaludi-Bak, S., Monemizadeh, M., Theocharous, L.: Clique-based
separators for geometric intersection graphs. In: 32nd International Symposium on
Algorithms and Computation (ISAAC 2021). pp. 22:1–22:15 (2021)

7. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015)

8. Bonamy, M., Bonnet, E., Bousquet, N., Charbit, P., Giannopoulos, P., Kim, E.J.,
Rzążewski, P., Sikora, F., Thomassé, S.: EPTAS and subexponential algorithm for
maximum clique on disk and unit ball graphs. Journal of the ACM 68(2) (2021)

9. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Computa-
tional Geometry 9(1-2), 3–24 (1998)

10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer Publishing Com-
pany, Incorporated (2015)

11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential pa-
rameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal
of the ACM (JACM) 52(6), 866–893 (2005)

12. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Decomposition
of map graphs with applications. In: Proceedings of the 46th International Collo-
quium on Automata, Languages, and Programming (ICALP 2019). pp. 60:1–60:15
(2019)

13. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi, M.: Finding, hit-
ting and packing cycles in subexponential time on unit disk graphs. Discrete &
Computational Geometry 62(4), 879–911 (2019)

14. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Bidimensionality and geometric graphs.
In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2012). pp. 1563–1575 (2012)

15. Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O∗(2.7k) time.
In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2022). pp. 971–989 (2020)

Faster Algorithms for Cycle Hitting Problems on Disk Graphs 21

16. Lokshtanov, D., Narayanaswamy, N., Raman, V., Ramanujan, M., Saurabh, S.:
Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms (TALG) 11(2), 1–31 (2014)

17. Lokshtanov, D., Panolan, F., Saurabh, S., Xue, J., Zehavi, M.: Subexponential
parameterized algorithms on disk graphs (extended abstract). In: Proceedings of
the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022).
pp. 2005–2031

18. Lokshtanov, D., Saurabh, S., Wahlström, M.: Subexponential parameterized odd
cycle transversal on planar graphs. In: IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2012). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

19. Rosenberger, H.: Order-k voronoi diagrams of sites with additive weights in the
plane. Algorithmica 6(1), 490–521 (1991)

20. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and re-
lated problems. Ph.D. thesis, Department of Computer and Information Science,
Linköpings universitet (2007)

	Faster Algorithms for Cycle Hitting Problems on Disk Graphs

